
i

NASA-CR-[92985

Statistical Modelling of Software Reliability

Semi-Annual Status Report No. 1

1 April 1991 through 30 September 1991

National Aeronautics and Space Administration
Grant NAG 1-1241

Douglas R. Miller

Principal Investigator

/ o2 63

¢s
(NASA-CR-192985) STATISTICAL

MOOELLING OF SOFTWARE RELIABILITY

Semiannual Status Report No. I, i

Apr. - 30 Sep. I99I (George M_son
Univ.) 45 p

N93-25257

Uncl <._s

G3/61 0160263

Department of Operations Research and Applied Statistics

School of Information Technology and Engineering

George Mason University

Fairfax, VA 20030-4444

NASA Grant NAG 1-1241 commenced on 1 April 1991. During the

six-month period from 1 April 1991 to 30 September 1991 the

following research work in statistical modelling of software

reliability appeared:

[i] A. Sofer and D. R. Miller, "A Nonparametric Software
Reliability Growth Model," IEEE Transactions on Software

Engineering 40 (1991): 329-337.

[2] P. A. Keiller and D. R. Miller, "On the Use and the

Performance of Software Reliability Growth Models," Reliability

Engineering and System Safety 32 (1991): 95-117.-

[3] M. Lyu, H. Hecht, H. Kopetz, D. Miller, J. Musa, M. Ohba,

and D. Siefert, "Research and Development Issues in Software

Reliability Engineering," Proceedings of the IEEE International

Symposium on Software Reliability Engineering (1991); 80-89.

(Reprinted in Software Engineering Notes 16,2 (1991): 23-30.)

[4] B. Littlewood and D. Miller (guest co-editors), Special

Issu'es on Software, Reliability Engineering and System Safety,

Volume 32, NI_eEs 1 and 2 (1991).

[5] B. Littlewood and D. Miller (co-editors), Software

Reliability and Safety, Elsevier Applied Science, London, 1991.

The above work was started with the support of NASA Grant
NAG 1-771 and was continued in the hope of receiving additional

NASA support. That support materialized as NASA Grant NAG 1-1241.

Final preparations for publication of some of the above works

were completed during the period covered by this Semi-Annual

Status Report.

Note that items [4] and [5] are essentially the same work in

different formats. Elsevier decided that it wanted to publish

the papers in the special issues [4] as a separate hardbound

volume [5] in order to reach a wider audience.

Copies of [i], [2], and [3] are attached to this report as

Appendices i, 2, and 3, respectively.

_pendix !

"A Nonparametric Software ReliabilityA. Sofer and D. R. Miller,

Growth Model," IEEE Transactions on Software Engineering 40 (1991):

329-337.

• IEEETRANSACTIONSON RELL-KBILFI'Y,VOL. 40, NO. 3, 19'91AUGUST 329

A Nonparametric Software-Reliability Growth Model

PREeEDING PAGE BLANK NOT

Ariela Sofer

George Mason University, Fairfax
Douglas R. Miller

George Mason University, Fairfax

Key Words_ Soft_are reliability, Complete monotonicity, Non-
parametric regression, Failure rate estimation, Failure rate
extrapolation

Reader Aids --

Purpose: Preseni a general model
Special math needed for explanations: Statistics and linear algebra
Special math needed to use the results: Statistics
Results useful to: Software reliability theorists and analysts

Notation

N(t)

M(t)

r(t)

(random) number of failures observed in [0,tl

E{N(t)}, mean number of failures, viz, the mean
function

dM(t)/dt,O < t, intensity function of the point process

{N(t),O<_t}

The r(t) is also referred to as the failure rate of the process,

although failure intensity is probably a better name. A function
r(•) is completely monotone if and only if it has derivatives
of all orders, and they alternate in sign:

(I) q dqr(t)- -- > 0, t > 0, q = 0,1,2 (2)
dtq

Abstract -- Miller & Sofer previously presented a new non-
parametric method for estimating the failure rate of a software
program. The metho_t is based on the complete monotonicity pro-
petty of the failure rate, and uses regression to estimate the cur-
rent software-failure rate. This paper extends this completely
monotone model and demonstrates how it can also provide longer-
range predictions of reliability growth. Preliminary evaluation in-
dicates that the method is competitive with parametric approaches,
while being more robust.

1. INTRODUCTION

Suppose a program is executed for a length of time 7".Dur-

ing this time, n bugs are detected and removed when they
manifest themselves as failures. The successive failures occur

at times:

0 < t I < t2 <...< t,_ < T. (1)

When bugs are corrected without introducing new faults, the

program evolves into a more reliable program, hence the term
"reliability growth". Given the past software data (1) we want
to make various statistical inferences concerning the current and

future reliability of the software. In particular we are interested
irl--

• the number of failures anticipated over some future horizon
• the future failure rate after an additional specified time of

debugging.

Over the years, many competing models for software-
reliability growth have been developed, eg, Duane [6], Jelin-
ski & Moranda [81, Goel & Okumoto [71, Littlewood [9], and

Musa & Okumoto [16]. These are all parametric models, and
have a common property: complete monotonicity of the failure
rate.

Miller [12] has shown that software under random time-

homogeneous testing or usage with perfect fixes shows com-

pletely monotone reliability-growth, and conversely that vir-
tually all completely monotone functions can occur as intensity

functions of reliability-growth point processes. Thus, a general

approach to software-reliability growth modelling should include
the entire class of completely monotone intensities. Reliability-

growth prediction based on a single parametric family of
reliability-growth processes cannot be justified.

Miller & Sofer [13] pt'_viously introduced a nonparametric
model for software-reliability growth which is based on com-

plete monotonicity of the failure rate. The method uses regres-
sion to estimate the current software failure rate. Miller & Sofer

[14] show that this method often gives estimates which have
a lower s-bias than those of certain (widely-used) parametric

methods; using Monte Carlo simulated failure data, these "com-

pletely monotone regression" estimates of current failure rate
are also shown to be more robust than the estimates based on

parametric models.
Chan [4] has estimated the distribution of time-until-next-

failure for real data using completely monotone regression

estimates of current reliability. He starts with a raw estimate
which is an exponential distribution with the estimated current

failure rate and then "adapts" it to a more general distribution

using the procedure of Littlewood & Keiller [10]. Chart then
evaluates these estimates using criteria of Abdel-Ghaly, Chan,
Littlewood [1]. The Chan study shows that completely monotone

regression gives good estimates that are more robust than

estimates from parametric models.
This paper extends the completely monotone software

model by developing a method for providing long-range predic-

tions of reliability growth, based on the model. The paper
derives upper and lower bounds on extrapolations of the failure
rate and the mean function. These are then used to obtain

estimates for the future software failure rate and the mean future

number of failures.

FILMED

0018-9529/91/0800--0329$01.00© 1991 IEEE

330 IEEE TRANSACTIONSON RELIABILITY. VOL 40. NO. 3. 1991 AUGUST

2. NOTATION, DEFINITIONS, ASSUMPTIONS

Notation

a second order difference defined in (17)

d order of the highest difference constraint (7)

D(x,y) weighted squared distance between vectors x and y

i,j dummy indices
k number of discrete time subintervals over the obser-

vation interval [0, T]

l number of subintervals over the future prediction

horizon

M(t) mean number of failures observed in the interval [0,t]

l(t(t) raw piecewise linear estimate of M(t)

r_, _(s,)

mi smoothed least squares estimate of M(s,)
n number of observed failures over the interval [0, T]

N(t) random number of failures occuring in the interval

[0,t]

{N(t),0_< t} stochastic point process of the number of failures

p defined in (9) in terms of the failure rate, and in (24)
in terms of the mean function

P (j) an" instance of a third order extrapolation of the failure

rate -- for j subintervals into the future

q defined in (12) in terms of the failure rate, and in (27)
in terms of the mean function

r(t) dM(t)/dt, failure rate at time t,

,'_ raw estimate of the failure rate over the subinterval i

r_ smoothed estimate (least squares estimate satisfying

completely monotone constraints) of the failure rate
over subinterval i

si iO, the end point of subinterval i
t time

T length of the observation interval

t_ occurence time of failure i

u defined in (15) in terms of the failure rate and in (30)
in terms of the mean function

v defined in (22)

w i weight assigned to subinterval i in the least squares

equation

adjustment to the number of failures in subinterval k,

see (8)

AJ order j backward difference operator see (5)

O T/k, length of each of the k subintervals of [0,T]; also

the length of the I subintervals in the future prediction
horizon

Other, standard notation is given in "Information for Readers
& Authors" at the rear of each issue.

Definition

A positive function r(.) is completely monotone if and only

if it has derivatives of all orders, and they alternate in sign, see (2).

Assumptions

1. Parametric models are an approximation to the

software-reliability growth process. In general, there is no "cot-

rect" parametric _liability-grov, th model. While a parametric

model might workwell on some failure-data sets. it might also

give bad predicti, ms for other data sets [I].

2. The "got'dness of fit" to observed data and "quality

of prediction" of_ture failure behavior are two distinct (not

necessarily equivalent) properties of reliability growth models

[l].

Background Theory

1. Under vet/general conditions, if the software usage

is random and thin homogeneous, and if faults are fixed im-

mediately and pertcdy, then the reliability growth process has

a completely momtone intensity [12].

2. Converse, virtually all completely monotone functions

can occur as the flure rate of reliability-growth processes [12].

3. PROBLEM FORMULATION

Consider the failure data as in (1). Our goal is to find a

completely monoDne rate function and/or the associated mean
function which belt fits the data. The mean function does not

strictly satisfy themmplete monotonicity property; rather, M(t)

is a nonegative fmction whose derivative dM(t)/dt is a com-

pletely monotone_nction. Our approach is to obtain an initial

raw estimate for _ required function from the data, and then

to smooth it by f'J_ng a completely monotonic function which

is closest to it in the least squares sense.
A reasonabteraw estimate M(t) for the mean function is

a piecewise line_ function with breakpoints at t,, i= 1..... n,
such that _4(t,)=i:

-t,)l(ti+i-ti) ti<_t<_ti+l; i=0 n-1
I_4(t) = _.n+6(l-t,)/(T-t,) tn <-t<-T.

(3)

The second termh the final interval reflects the absence of a

failure in the peri_ (t_,T]. The choice of _i is somewhat ar-

bitrary, with higtm" values tending to give more conservative
estimates. In thiswork we consider values of 0.0, 0.5, 1.0 for

_5;however one c_1 argue for and against any particular value.

In practice, it is necessary to discretize the problem of

finding a complen_ monotone function to the mathematically

more tractable problem of finding a finite set of points along

that function. Themost plausible and straightforward approach

is to consider di_rete time points which are equally spaced.

We thus divide thttime interval [0, T] into k intervals of equal

length 8= T/k, allldefine s,=iS, i=0 k. Thus the sequence

,'h,-=_(si) is an _itial estimator for the values of the mean

function at the fi_! intervals si. In general, however, this se-

quence does not stisfy the complete monotonicity assumptions
of the model, a_ thus needs some modification.

For the prol/Ima of estimating the rate function, we obtain

an initial estima_" from the slope of M(t). Specifically, the

sequence- Oi_I_NAL P_E 15

OF POOR QUALITY

SOFEtU,_flZ.LER: A NONPARAMETRIC SOFTWARE-RELIABILFI_" GRO_,'rH MODEL 331

_i = (rh, -rh,_l)/0; i=l k

is a raw estimate of the failure rate at the points si.

When working with discrete, equally spaced time points,

the analogue of a completely monotone function is a complete-

ly monotone sequence. The sequence (r i, i = 1,2) is com-

pletely monotone if-

(- 1)J AJ r,>_O, j+ l_i; j=O,l (4)

where A: is the order j backward difference operator:

A ° r_=ri, AI ri=ri--ri-i, AJ ri=M -t rj--A)-I r__ I, j> 1.

(5)

In general, the initial estimate (,_1..... ,*_) does not have the

complete monotonicity property. Our goal is to find the

"closest" completely monotone sequence (rt rk), and use

it as an estimate of the sequence of failure rates at times s,. Us-

ing the criterion of weighted least squares, the problem is to

find a vector r wfiich minimizes --

k

D(r,:) = _ w,(r,-_,) _ (6)

subject to the complete monotonicity constraints of (4), where

w, is a set of prespecified weights.
Numerical experience indicates that the effect of the very

high order difference constraints on the optimal solution is at

most marginal; moreover, their presence leads to iU-conditioning

of the optimization problem. Consequently we relax the con-
straints in (4) and consider differences of at most d (not oo),

with d being typically 3 or 4. Similarly, it is necessary to con-

strain the sequence infinitely far into the future; we restrict the
number of future intervals to 1, rather than oo. Finally, many

of the constraints in (4) are redundant, eg, Ar,_t--<O and A 2

i-,>_0 imply that A r,_>0. Eliminating those redundant con-
straints, we obtain the reduced system of equations --

d+l<_i<_k+l

O<_j<_d- 1,

(7)

and our problem is to minimize (6) subject to (7).

For d= 1, the problem is the well known "isotone regres-

sion" (Barlow, et al [2]) and addressed in the reliability-growth

context by Campbell &Ott [3], and Nagel, et al [17]. If the

last interfailure happens to come from the right tail of the in-

terfailure time distribution, Pk underestimates r(T), and the

monotone constraint on r has no effect; thereby leading to a

negative bias. Imposing the additional constraint of convexity
tends to pull this estimate up. In most software-reliability ap-

plications, a positively biased estimate of the failure rate is safer

than a negatively biased estimate; thus, higher order constraints
seem to be desirable, and the generalization of isotone regres-

sion to completely monotone regression is an improvement.

Return to the problem of estimating the mean function. Its
first order derivative is completely monotone, and using the

above, our problem is:

k

min D(m,tfi) = E w'(m'-thi)2
i:*l

subject to (-1)a+l_ '_ m,>_O, d<_i<k+l (8)
(-- 1)JA j mk+l>_O, 0 <_j <<-d - 1

ink--n+6, k>0

mo_0.

If testing stopped at a failure, (t,= T), then _5=0. For trun-

cated testing however, _5= 0. 5 is more plausible. Using an argu-

ment based on the assumption of Poisson process, di= I is also

a plausible choice.

The optimization problems in this section are linearly con-

strained quadratic programming problems, and algorithms for

their solution are readily available in the literature. However,

our particular problem of least squares regression under higher
order difference constraints becomes increasingly ill-conditioned

as the problem size grows [15]. Thus, a numerically stable

algorithm should be employed for its solution. For a detailed

description of a viable solution approach, see [15].
An additional difficulty when attempting to include

monotonicity requirements into the future, is that the Hessian

matrix (the matrix of the second order derivatives of the objec-

tive function) is singular since the predictions r, and m, (where

i=k+ 1 k+l) do not appear in the objective. Moreover, the

optimal future rate or mean estimators obtained by the least

squares objective are not unique. Section 4 shows how to over-
come the problem of singularity, by reformulating the con-

straints on the future rates (or mean function estimates) in terms

of those of the past. Surprisingly, this approach also provides

bounds -- lower and upper envelopes for these future estimates.

4. PREDICTIONS

Formulation (8) gives rise to some computational problems,

when predictions are requested, ie, when l> O. Algorithms for

solving quadratic programming problems [11] usually require
that the Hessian matrix of the objective function be positive-

definite. However, the Hessian matrix of the objective for (6),

(ie, diag (w I..... w,O) is only positive semi-definite, and does

have singularities. As a result, not only do we encounter

numerical difficulties when trying to solve the problem direct-

ly, but the optimal solution is not unique. Indeed, any two solu-
tion vectors where the first k components are equal, yield ex-

actly the same objective value. In other words, if the complete-

ly monotone sequence (rt rk) can be extrapolated l time in-

tervals into the future, in a way that the resulting sequence

(r I..... rk+t) is completely monotone, then all such possible ex-

trapolations have the same least squares objective. We show,

that among all such extrapolations, there exist a globally highest

and a globally lowest extrapolation, and all other completely

monotone extrapolations into the future must lie in between the

332 IEEE TRANSACTIONS ON RELIABILITY. VOL 40. NO 3. 1991 AUGUST

highest and lowest bounds. We thus have an envelope in which

all completely monotone extrapolations are restricted. In addi-

tion, we derive the conditions under which the sequence

(r_ r_) can be extrapolated as a completely monotone se-

quence into the future,

Consider the completely monotone sequence of order d:

R= (r I rk). The sequence (rk+ t rk. t) is defined to be

a feasible completely monotone extrapolation of order d for R,

if the sequence (r I..... rk.t) is completely monotone up to

order d, ie, it satisfies (7). In addition, this extrapolation con-

stitutes an upper bound for all feasible extrapolations of order

d, if any other such extrapolation, (Fk+l Fk+t) satisfies

-k÷,<r+, for i=1 I. Similarly it constitutes a lower

envelope if :',+i> rk+, for all i. We derive conditions for the

existence for such higher and lower envelopes for the completely

monotone extrapolations.

For d=l and d=2, the sequence (r I..... r_) can be ex-

traplated into the future by letting r_+i=r _, i= 1 I. This ex-

trapolation is clearly the upper envelope for all completely

monotone extrapolations of order 1 and 2, and is always feasi-

ble. Also for d= 1, the extrapolation rk+,=0 is clearly a lower

envelope for _11 isotone extrapolations. The next proposition

shows, that the lower envelope for feasible extrapolations of

order d= 2 is along a piecewise linear function which has slope

A _ r,, until it reaches zero, after which it continues as a
constant function zero. We define

ilb(-rk/A _ q.) ,if A _ r_>O (9)P = ,if A Irk=O

Proposition I. Consider the constraints (7) with d=2 and fix-

ed l>0, and let (r 1..... rk) be a feasible solution to (7) with

1=0. Then the extrapolation

k+iAI re i=l pr_+i = i=p+ 1 l
(iO)

is a lower envelope for all feasible extrapolations of order 2

to (r t rk).

Proof'. The solution above is clearly monotone, and A 2

r_+i=0 for i=1 p and i=p+3 1. In addition, A 2

rk+p+l = -- (rk + (p+ l)A I rk) and A 2 r_+p+2=rk +pA I rk,
which, by def'mition ofp are both normegative. Thus the con-

straints of (7) for d = 2 axe satisfied. Note also, that for any

other feasible extrapolation (:-k+ 1..... P_+t) we have --

A I :-k+j>A 1 r_

Thus, if i<_p then --

i

r-k+i = rk + E AI F'k+J > G+iA1 rk = rk+i"

j=l

It follows that (10) is a lower envelope as proposed.

Proposition 2. Consider the constraints (7) with d= 3 and fix-

ed l>0. A solution (r I r_) which satisfies (7) v, ith 1=0 can

be extrapolated to a vector (rj r,+ t) which satisfies (7) _ith

/>0 if and only if:

1

G+jA t rk+-_ j(j+ I)A: re-->0; j= 1..... I. (11)

In addition, let --

I_ilb(A I rklA 2 rk) if A 2 rk>0q = if A 2 r_=0.

Then the upper envelope of all feasible extrapolations for d = 3
is"

Irk+i AI G+V:i(i+I)A 2 rk i=l q
rk+i ---- (rk+ q i=q+ I I.

Proof: Any feasible extrapolation satisfies:

i

rk+ i = r, + E AI G+j

2=1

= r, + _ IAI r_+ _ A2 r,+h I

.1=1 h=l

i j

= rt + iA I G+ E E A: r_+h

j=l h=l

1
< r_ + iA I r_ + -'2- i(i+1) A2 G

2

and the nonnegativity of r,+ i implies that (11) must hold.

Conversely, assume that (11) holds. Now since {ri} is
completely monotone of order 3, the sequence {- A _ r,} is

completely monotone with order d= 2. Using proposition I for

the lowest feasible convex extrapolation for {- A _ r_}, we ob-

tain the upper envelope for completely monotone extrapolations
of (r_ r,) of order 3. Q.E.D.

Proposition 3. Consider the constraints (7) with d= 3 and fix-

ed 1>0, and let (r t rt) be a solution to (7) with 1=0 saris-

fying (11). Let p be defined as in (9).

(a). If p_> 1, then the extrapolation --

r_+ i = r_ + iA _ ri, i= 1 p

is a lower envelope for all feasible extrapolations of order 3
to (r_..... rD.

(b). If p < l, let

Q.E.D. u = rrfin(l,l+gilb(-2rk/A _ r,)).

SOFERJMILLER: A NONPARAMETRIC SOFTWARE-RELIABILITY GRO%q-H MODEL 333

Then the extrapolation --

rk+ I

IOk÷iA'rk+2i(i+1)I "-2(r_+uA!u(u+1) rk)" 1 i--I ui=u+l 1

(12)

is a lower envelope for all feasible extrapolations of order 3

to (r_ r,).

The proposition states that the lowest envelope is a linear

function with slope A _ rg, provided that such a linear function

is feasible (normegative); otherwise it starts as a quadratic func-
tion with constant second order difference

2(rk+uA r,_))a = -- u(u+ 1) "

which flattens to zero at rk+,,, and from there continues as

zero.

Proof. [fp -> I then (10) is a feasible extrapolation of order

3, thus a follows from proposition 1. lfp _<l then (10) does not

satisfy the third order difference constraints. We now show that

for this case, the function of (12) is a lower envelope for any

feasible extrapolation. First assume that there exists a feasible

extrapolation F_+ l...f'_+t for which A s F_+ I <a. Then

1

rk+l+(u--1)A l F,_+,+-_-- (u-1)uA _ F_÷t

I

--- rk+ uAI rk+-_u(u+l)A 2 f'k+l

= rk+uA 1 rk-- (rk+uA l rk) =0,

in contradiction to the conditions given by proposition 2, for

a feasible extrapolation for r I rb Fk+ t. We therefore con-

clude that any feasible extrapolation has a second order dif-
ference of at least a. If, on the other hand, A 2 Fk+l>a, then

Fk+ t > rk+ I. An inductive argument starting from rk+ t com-

pletes the proof. Q.E.D.

Proposition 4. Consider the constraints (7) with d=4 and fix-

ed l>0. A solution (r I..... rk) which satisfies (7) with l=0 can

be extrapolated to a vector (rl rk+l) which satisfies (7) with

1>0 if and only if --

1

A I rk+jA z rk+yj(j+l)A 3 rk <_ O,j=l 1 (13)

rk+lA t rk+ll(l+l)A 2 rk > O, (14)

2 1
rk+_(j--l)A 1 rk+-7-j(j-1)A 2 rk > 0, j=l I. (15)

3 O

If A l r_+lA: rk<O then the upper envelope of all such ex-

trapolations is:

r_+i = rk+ iAI rk+li(i+l) A2 r_, i=1 p. (16)

Otherwise, let --

v = min(l,l +gilb(-2A 1 rk/A 2 rk)).

Then the upper envelope of all such extrapolations is:

rk+iA_r_+ i(i+l)A2rk+ i(i+l)(i+2)

(--2(A'rk+vA2r')) i=l v.....rk+i = V(v-t-l)

rk+ ,. i=v+ 1 I.

(173

Proof'. If the sequence {rk+,} is a feasible extrapolation

of order d=4 then the sequence {-A 1 r,+i} is a feasible ex-

trapolation of order d = 3. By Proposition 2, the conditions for

existence of the latter are given by (13). In addition, the upper

envelope of all extrapolations for d=4 is the sequence {r_+,}

for which { -A _ r_+,} constitutes the lower envelope of all ex-

trapolations of order d = 3. Applying Proposition 3 with respect

to the sequence {--A t rk+,} and integrating over this lower

envelope yields the sequence of (16) and (17). Note that by con-

struction, the resulting sequence is nonincreasing, convex with

nonpositive third order difference. It remains to determine the

conditions under which this sequence is nonnegative. First, we

note that condition (14) guarantees that (16) will be nonnegative.

From Proposition 2 this is also a necessary condition. Also con-

ditions (15) guarantee that r_+_ is nonnegative for any possi-
ble value of v between 1 and l. Since (17) represents a decreas-

ing function which becomes constant for i >__v, this guarantees

that r,+, is also non.negative for any i. To show that conditions

(15) are also necessary, define

2 1

p(j) = r_+-_(j--l)A _ r_+-_-j(j-l)A _ r_.

It is easy to see that P(j) decreases for j= 1..... v and increases

forj=v L Suppose that (15) is violated for somej. Let j-"
be the smallest index to violate this condition. It follows that

j-'_< v and that P(v) <0. This in turn implies that r_+_<0, and

thus no feasible extrapolation with d=4 is feasible, hence a

contradiction. ' Q.E.D.

We now derive the envelopes for prediction for the mean

function. Consider a sequence of order d: M= (m_ m_)
which satisfies (8). The sequence (ink+ I mi+ t) is defined

to be a feasible extrapolation of order d for M, if the sequence

(rn_ rnk+t) satisfies (8). In addition, this extrapolation con-

stitutes an upper bound for all feasible extrapolations of order

d, if any other such extrapolation (_+_ r_+t) satisfies

r_+__<mk+_ for i=1 I. Similarly it constitutes a lower

envelope if r_÷,>_m_+, for i= 1..... I.

334 IEEE TRANSAC'_NS ON RELIABILITY, VOL ._O, NO, 3, 1991 AUGUST

We derive conditions for the existence for such higher and

lower envelopes for the feasible extrapolations for M. The

derivative of the mean function is completely monotone.

Therefore, the lower and upper bounds for all feasible extrapola-

tions of order d to rn1..... m k are obtained by integrating respec-

tively over the lower and upper bounds for all feasible extrapola-

tions of order d- l to Am I..... Am,_.

Consequently, for the case d= i, d=2 and d=3, the se-

quence (m I..... ink) can always be extrapolated into the future.

The upper envelope for all feasible extrapolations of order up
to 3 is the linear function:

mk+_ = mk+iA I ink.

For d= 1 and d=2 the extrapolation ink+, = mk is clearly a

lower envelope for all feasible extrapolations. Proposition 5

shows, that the lower envelope for feasible extrapolations of

order d = 3 is along a quadratic which tapers off to a constant
function.

Proposition 5. Consider the constraints (8) with d = 3 and fix-

ed/>0, and let (m I rak) be a feasible solution to (8) with
/=0. Let-

--A I mk/A 2 rnk), if A 2 m,_>0P = , if A' (18)ink=0

Then the extrapolation --

mk + iA I mk + IAi(i + 1),5 2 ink, i= I p
mk+l = kmk+p , i=p+ l 1

is a lower envelope for all feasible extrapolations of order 3

to (rn I..... ink).

Proof. Follows from proposition 1. Q.E.D.

Proposition 6. Consider the constraints (8) with d=4 and fix-

ed l>0. A solution (ml ink) which satisfies (8) with l=0

can be extrapolated to a solution (rn I rn_+t) which satisfies

(8) with l>0 if and only if"

A I rnk+j,5 2 mk+lj'(j+ 1)`5 3 mk >-0, j=l I. (19)

Let--

I_ilb(-,5 2 mk/A 3 rak), irA 3 mk>Oq = , if A 3 rnk=O

1

= A 1 mk+qA 2 mk-I- -_-q(q+ 1)`5 3 m k,

Then the upper envelope of all such extrapolations is:

rr/k+ J

rnk + i`5 I,nk+ 1/2 i(i + 1) A'_mt + 1/6 i(i + I) (i+ 2)A3mki= l q

m,+q+ (i-q) i=q+ I I.

Proof: Follows from proposition 2. Q.E.D.

Proposition 7. Consider the constraints (8) with d=4 and fix-

ed/>0, and _ (m I..... m k) be a solution to (8) with 1=0 satis-

fying (19). Ltt p be defined as in (18).

a. If p>_l, then the extrapolation --

mk+i = m, +iA 1 mk +li(i + l)`5 2 ink, i=1 p

is a lower e_elope for all feasible extrapolations of order 4

to (m k..... mdt]b.

b. If pal, let --

u = min(l,l+gilb(-2A I ink�`5 2 m,)).

Then the exmpolation --

mk+ i

°

m,+i`5 'm,÷li(i+ 1)A2mt+ 6i(i+ I)(i+2)

(' ,)-2('_ mk+u`5"mk) i= l u
• w

u(u+l)

rnk+u i=u+ 1..... 1

is a lower eatelope for all feasible extrapolations of order 4

to (m, _l.

Proof: Follows from proposition 3. Q.E.D.

Proposi_n 7 states that the lowest envelope is either along

a quadratic fuaction, or it starts as a cubic function which tapers
off to a constant function.

5. MONTE CARLO STUDY OF PERFORMANCE

To get m idea of how well the prediction envelopes

estimate futuR behavior, we conducted a small Monte Carlo

simulation exlperiment. Our goal is to estimate the number of

events over _e finite horizon. As in [13], we compare the

completely rmnotone approach to some of the more popular

parametric rmdels. A value of d= 4 is used for the completely
monotone es&nation 05 is taken as 1). Thus the least squares

problem (8) il solved for d=4, with the constraints of (19)

replacing the mnstraints of (8) for i = k + 1..... k + L Propositions

SOFER, MILLER: A NONPARAMETRIC SOFTWARE-RELLABILITY GROWTH MODEL 335

6 and 7 are applied to the resulting solution to obtain the upper

and lower envelopes for the future mean function. Finally, we

need a point estimate of the mean number of failures. We ar-

bitrarily decided to use the midpoint of the envelope.

Our choice of parameter models consists of three families

of nonhomogeneous Poisson processes (NHPP). The mean func-

tions of the NHPPs can have exponential, power or log_irithmic

form:

Mexp(t) = -r(l-e-_'),

Mpo,_(t) = 7t a,

Mtos(t) = 71og(flt+ 1).

Those models are fit to data by using the method of maximum

likelihood [16]. Furthermore, we define a fourth model which

is a mixture of the above three. It is fit by selecting the best

fitting (maximum likelihood) of the three models. This is the

"best" parametric model, among the three possibilities.

We draw our data from 16 different Poisson processes.

Each process is observed over the interval [0,100] and the future

interval is [100,1_5], -- 25% into the future. We used k=20

and l=5. The 16 cases provide a variety of growth patterns.

Each case is replicated 400 times. The cases are summarized

in table 1.

TABLE 1. Data Models (Poisson Processes).

JAil models are scaled so that E(N(IO0)) = M(100) = 40]

Model Type of M([25)-
Number NHPP Parameter Mf 100}

1 Homogeneous 10.00

2 Power or = .749 7.28

3 Power or = .557 5.29
4 Power a = .410 3.83

5 Power or = .296 2.73

6 Power or = .208 1.90

7 Logarithmic _ = .0124 6.42
$ Logarithmic _ = .0.429 4.43
9 Logarithmic fl = . 131 3.16

l0 Logarithmic fl= .461 2.27
11 Logarithmic _ -, 2.43 1.62

12 Exponenual _ = 00808 5.8g

13 Exponential _ = .0167 3.17
14 Exponential _ = .0'265 1.47

15 Exponential _ = .0385 0.54
16 Exponential n = .0550 0.12

The performance of the parametric models and the com-

pletely monotone approach are summarized in tables 2 -4. Table

2 shows the average prediction made by each model for the 400

replicates of each case. Table 3 shows the average percentage

error, or bias. Table 4 shows the root-mean-square percentage

error for the 400 estimates made by each model for the 16 test

cases. When the data come from a certain model, then that par-

ticular model gives the best predictions. However in most cases,

the completely monotone comes in as "second best", ie, it gives

better predictions than those given by using the incorrect

parametric model. In practice, of course, it is highly unlikely

that a parametric model used for prediction will indeed be the

"correct" model from which the failure data were generated.

Table 5 summarizes the performance of the prediction

envelopes. The majority of the envelopes have zero width, ie,

the upper envelope is identical to the lower envelope.

TABLE 2. Average Predictions of Mean Number
over Future Horizon

Model True CM.

Number glean EXP LOG POW BEST Mdpt.

1 10.00 8.67 8.86 9.33 8.73 9.52

2 7.28 5.62 6.11 7.34 6.38 7.72

3 5.29 2.97 3.73 5.36 4.70 5.88

4 3,83 1.36 2.23 3.88 3.62 4.50
5 2.73 0.51 1.31 2.76 2.65 3.40

6 1.90 0.15 0.75 1.92 1.87 2.52

7 6.42 6.10 6.76 8.20 6.48 7.44

8 4.43 3.41 4.68 6.63 4.19 5.3g

9 3.16 1.64 3.29 5.27 2.89 4.06

I0 2.27 0.64 2.35 4.11 2.28 3.08

II 1.62 0.18 1.66 3.10 1.71 2.30

12 5.88 5.86 6.57 8.09 6.26 7.31

13 3.17 3.21 4.70 6.72 3.67 4.73

14 1.47 1.51 3.62 5.63 1.91 2._

15 0.54 0.57 2.95 4.77 0.75 1.60

16 0.12 0.14 2.48 4.07 0.2I 0.88

TABLE 3

Percent Prediction Error (Bias) for Mean Future Number

Fitted Model
Model

Number EXP LOG POW BEST CM

1 -13. -I1. -7. -13. -5.

2 -23. - 16. + 1. - 12. +6.

3 -44. -30. +1. -11. +ll.

4 -65. -42. + I. -6. + 17.

5 -81. -52. +I. -3. +24.

6 -92. -61. +I. -2. +33.

7 -5. +5. +28. +I. +16.

8 -23. +5. +50. -6. +21.

9 -48. +4. +67. -8. +29.

I0 -72. +3. +81. O. +36.

11 -g9. +3. +98. +6. +42.
12 0. +12. +32. +6. +24.

13 + 1. +48. + 112. + 16. +49.
14 +3. +146. +282. +30. +93.

15 +6. +448. +788. +40. + 199.

16 +14. +1921. +3216. +74. +615.

Perspective

We stress that some components in the formulation of the

completely monotone model were chosen arbitrarily. Other

definitions of the raw estimates and other objective functions

336 IEEE I_P..ANS.XCT_ONS ON RELIABILFFY, VOL 40. NO 3. 199I A,UGUS'T

TABLE 4

Percent Root Mean Square Error
for Mean Future Number Prediction

Fitted Model

Model

Number EXP LOG POW BEST CM

I 26. 24. 29. 24.

2 39. 32. 23. 31.

3 53. 39. 23. 32.

4 69. 46. 23. 29.

5 83. 55. 23. 26.

6 93. 62. 23. 26.

7 37. 32. 39. 36.

8 4.4. 31. 59. 43.

9 57. 26. 75. 47.

10 75. 23. 89. 40.

11 90. 21. 99. 27.

12 38. 34. 47. 37.

13 45. 61. 120. 53.

14 54. 155. 292. 82.

15 67. 461. 805. 134.

16 95. 1956. 3268. 336.

acknov,'ledges support of the US National Aeronautics and Space
Administration Grant NAG- 1-771.

REFERENCES

29, [I] A. A. Abdel-Ghaly, P. Y. Chan, B Littlewood, "'Evaluation of corn-

30. peting software reliability predictions", IEEE Trans. Software Engineer.

39. ing, vol SE-12, 1986, pp 950.-967.

48. [2] R E. Barlow, DI J. Bartholomew, J. M Brerrmet, HI D Bmnk, Stansncal

60. Inference Under Order Restrictions, 1972; John Wiley & Sons.

73. [3] G Campbell. K. O. On, "'Statistical evaluation of major human errors

38. during the developmenl of new technological systems", Nuclear Science

50. and Engineering, vol 71, 1979, pp 267-279.

62. [4] P. Y Chart, Software ReliabiliD' Prediction (PhD Thesis), 1986, Depart-

74. ment of Mathematics,, The City University, London.

85. [5] L. H. Crow, Reliability analyses for complex repairable systems, Rehabihty

45. and Biometry, (Proschan & Serfling, eds), 1974, pp 379-410; SIAM,

80. Philadelphia.

142. [6] J. T. Duane, "Learning curve approach to reliability monitoring", IEEE

278. Trans. Aerospace, vol 2, 1964, pp 563-566.

776.

TABLE 5

Performance of Completely Monotone Prediction Windows

True Mean Coverage

Data Fraction Fraction Av. width

Model Zero Non-zero Non-zero Fraction Fraction

Number Width Width Envelope Overestimate Correct

I .715 .285 0.348 .408

2 .515 .485 0.816 .475

3 .503 .497 0.966 .542

4 .548 .452 0.759 .550

5 .570 .430 0.588 .585

6 .600 .400 0.414 .595

7 .420 .580 1.116 .610

8 .417 .583 1.334 .515

9 .505 .495 0.897 .560

10 .573 .427 0.616 .600

11 .573 .427 0.441 .605

12 .363 .637 1.228 .648

13 .305 .695 1.828 .520

14 .321 .679 1.300 .574

15 .503 .497 .0656 .652

16 .698 .302 0.209 .925

Fraction

Underestimate

.067 .525

105 .320

182 .275

167 .283

160 .255

155 .250

193 .197

.283 .202

.243 .197

.193 .208

.182 .213

.190 .162

.400 .080

.333 .093

.243 .105

.063 .013

will give different, and possibly better estimates. Nevertheless,
the completely monotone approach shows a robustness not ex-

hibited by the individual parametric models. The procedure has

quite low bias, which is less than that caused by using the in-
correct parametric models for prediction. Comparisons to the

"best" parametric model are unfair because the Monte Carlo
data are, in effect, drawn from that model. We could use other

models to generate data for which this "best" parametric model

is inferior to the more robust completely monotone approach.

ACKNOWLEDGMENT

AS gratefully acknowledges support of the US National

Science Foundation Grant ECS-8709795. DRM gratefully

[7] A. K. Goel, K. Okumoto, "Time independent error detection rate model

for software reliability and other performance measures,", IEEE Trans.

Reliability, vol R-28, 1979, pp 206-211.

[8] Z. Jelinski, P. Moranda, "Software reliability research", Statistical Corn-

puter Performance Evaluation, (W. Ferberger, ed), 1972, pp 465-484;

Academic Press.

[9] B. Linlewood, "Software reliabilitygrowth: A model for faultremoval

in computer-programs and hardware-design", IEEE Trans. Reliability,

vol R-30, 1981, pp 313-320.

[10] B. Littlewood,P. A. Keil]er,"Adaptive software reliabilitymodelling",

Proc. 14-th lnt 'l Conf. Fault-Tolerant Computing, 1984, pp 108-113; [EEE

Computer Society Press.

[1 I] G. P. McCormick, Nonlinear Programming, 1983; John Wiley & Sons.

[12] D. R. Miller, "Exponential order statistics models for software reliabili-

ty growth", IEEE Trans. Software Engineering, vol SE-12, 1986, pp

12-24,

SOFEK,,%ffLLV_..R: A NONPARAMETR]C SOFTWARE-RELIABILITY GRO',_FI MODEl.
!

337

[13] D. R. Miller. A. Sorer, "Completely monotone regression estimates

of software failure rates", Proc. Eighth lnt'l Conf. Software

Engineering, 1985, pp 343-348; IEEE Computer Society Press.

[14] D. R. Miller, A. sorer, "A nonparametric approach to software

reliability, using complete monotonicity", Software Reliability: A

State of the Art Report, (A. Bendell, P. Mellor, exls), 1986, pp

183-195; Pergammon Press,

[151 D. R. Miller, A. Sofer, "Least squares regression under convexity

and higher order difference constraints with application to software

reliability", Advances in Order Restricted ln[erence, (Dykstra,

Robertson, Wright, eds), 1986, pp 91-124; Springer Vedag.

It6] J. D. Musa, K. Okumoto, "A logarithrruc Poisson execution time

model for software reliability measurement", Proc. Seventh [nt'l

Conf. Soft,'are Engineering, 1984, pp 230--238; IEEE.

[17] P. M. Nagel. F. W. Scholz, J. A. Skr'ivan, "Software reliability:

Additional investigations into modeling with replicated experiments",

CR-172378, 1984; NASA.

AUTHORS

Professor Ariela Sofer; Department of Operations Research and Applied

Statistics; George Mason University; Fairfax. Virginia 22030 USA.

Ariela Sorer received her BSc in Mathematics and her MSc in Opera-

tions Research, both from the Technion, Technological Institute of Israel. She

received her DSc degree in Operations Research from The George Washington
University m 1984 Dr. Sorer joined George Mason University in 1993. _,here

she holds the rank of Associate Professor. Her areas of interest are so_ware

reliability, mathematical programming, and numerical optimization. She is a

member of ORSA, SIAM, and the Mathematical Programrmng Society.

Professor Douglas Miller; Department of Operations Research and Applied

Statistics; George Mason University; Fairfax, Virginia 22030 USA.

Douglas R. Miller received his BS in Mathematics from Carnegie In-

stitute of Technology, Pittsburgh in 1966, and the MA in Mathematics and PhD

in Operations Research from Cornell University, Ithaca in 1969 & 1971. Dr.

Miller held positions at the Uni,,ersity of Missouri-Columbia, and the George

Washinglon University, before joining George Mason University, F'airfax in

1989, where he is Professor of Operations Research and Applied Statistics in

the School of Information Technology and Engineering. He has a/so held visiting

positions at Universidad National del Sur, Argentina, and the City University,

London. His current research involves probability modeling and statistical

analysis, with applications to software reliability, queueing systems, and

polymerization processes. Since 1977 he has been associated with the advanced

digital avionics program at NASA Langley Research Center. He is a member

of ORSA, "ELMS, ASA, ACM, and the IEEE Computer Society.

Manuscript TR88-216 received 1988 December 15; revised 1990 August 15.

IEEE Log Number 42712 ,4TRb,.

Appendix 2

P A Keiller and D R Miller,.... "On the Use and the Performance of

Software Reliability Growth Models," Reliability Engineering and
System Safety 32 (1991): 95-117.

Reliability Engineering and System Safety 32 (19911 95-117

On the Use and the Performance of Softwart Reliability
Growth Models

Peter A. Keiller

IBM Corporation, Library Management and Systems Control Department,
10401 Fernwood Road, Bethesda, Maryland 20817,

&

Douglas R. Miller

Department of Operations Research and Applied Stathlics,
School of Information Technology and Engincerin?,,

George Mason University, Fairfax. Virginia 22030. UWaA

ABSTRACT

We a_htress the prohh,m of predictmg ft,ture failures fi_r a ph_r e!f so/'tware.

The number of failures occltrring ehtring a finite Jiaure t?_" hlterval is

predicted from the ntmd_er o.f fitih_res obserted _hering an in_ial period of

usage by using software reliabilit)' grmvth models. Two differert methods.fi_r

ushTg the models are conshlered: straightforward use of indeuhtal models

(sbnple models), and tO'namic selection amonlg models based argoodness-of-

fit attd quality-of-prediction criteria (super models). Perfortr_we is judged

b _"the relatire error of the predicted number of failures orerfuaretqnite time

interrals relatit'e to the number of failures eventually obserrtd &¢r#Tg the

intervals. Six simple models and eight super models are et'almted based on

their performance on twent)" data sets. This study is _." no means

comprehensive. Some conclusions can be drawn, but many _en questions

remain regarding the use and the performance of soft,rare rel=bilit)" growth
models.

INTRODUCTION

Software sometimes fails to perform as desired. These failu_ may be due to

errors, ambiguities, oversights or misinterpretations of die specification
95

Reliahilit)" Engineering and System Safer)" 0951-8320 91,$03"50 _ ltJ! Elsevier Science
Publishers Ltd. England. Printed in Great Britain

PAGE BLANK NOT FILMED
ORdiNaL PAC_E IS

OF POOR QUALITY

96 Peter A. Ketller, Douglas R. Miller

which the software is supposed to satisfy, carelessness or incompetence in

writing code, inadequate testing, incorrect or unexpected usage of the

software, or other unforeseen problems. All of these potential sources of
failure create an environment of uncertainty for the behavior of any

software: will the software fail or not? If so, when? Statistical modeling and

analysis provide tools to investigate this phenomenon.

A general goal is to understand, predict and control the uncertainty in

software failure behavior. Statistical models and analysis can investigate

various aspects of software and its failure, at different levels of detail. Our

study treats a piece of software as a 'black box' operating in a random
environment. We ignore factors in the development of the software, the

internal structure and functioning of the software, and details of the

operating environment. In contrast, Eckhardt & Lee, t Littlewood 2 and

kittlewood & Miller 3 present models that deal more closely with the
structure of the software.

In this paper we consider the sequence of times at which a piece of

software fails. After each failure, the software is fixed so that (hopefully) it

will not fail again from the same cause. From these data we want to predict

future failure behavior. In particular, we will try to predict the number of

additional failures which will occur during a future time interval of finite

length. Our approach is to use 'reliability growth models'. The questions are:

'What is the best way to do this?" and "How well do these models predict

future failure behavior?'. Many reliability growth models have been

proposed. For a given piece of software it is very difficult (perhaps

impossible) to know which reliability growth model to use. (Iannino et al. 3_

give qualitative guidelines for choosing different software reliability growth

models.I It is also difficult to know much about the accuracy of the

predictions about future failures. Our study looks at these problems.

We have taken failure data for 20 programs, fitted reliability growth

models to initial segments of each data set, predicted the number of

remaining failures in the data set, and computed the prediction errors. Our

reliability growth models include several of the usual models in the literature

and additional models that we call 'super models'. These super models are

based on a set ofthe usual reliability growth models plus a selection criterion

which identifies one of the set to use for predictions at each point of time;

selection criteria may be based on 'goodness-of-fit' or 'quality-of-past-

prediction' measures. We have tried to identify the best models or

approaches, conditional on our 20 failure data sets. We cannot make any

strong recommendations, but we do see that many of the models give useful

predictions if only nominal levels of reliability are of concern. The major

conclusion is that there are still important open questions in the area of

reliability growth modeling and prediction, We hope that this paper will

OF POOR QUALITY

serve

that :

Ar

relia_-

treat_

critic

gro_-
futur

safer,

prese:

A sys:
some

the d_

"F

1

]

f

t

t

f

2

t

"1

5

J

]

h

,f

;r

fl

e

.q

r

Y
11

r

,f

11

Software reliability growth models 97

serve as an example of an objective study of this important problem, and
that more work will be done.

An important negative conclusion can be drawn from any study of

reliability growth modeling: only moderate levels of reliability can be

treated. Extremely high levels of reliability such as those required in safety

critical systems cannot be treated; see Miller. "*'5 Some software reliability

growth models will occasionally predict that no failures will occur in the

future; however, this cannot be done with levels of confidence required in

safety critical software. Even the most casual examination of the numbers

presented in this paper should lead the reader to that conclusion.

THE RELIABILITY GROWTH SCENARIO

A system contains design flaws, each of which eventually manifests itself at

some point in time, whereupon the system is redesigned in order to remove

the design flaw. Design flaws are often called *bugs', and the time points of

6OOO

48 00] /-
__r.r--

36 00"

1200"

000
000

Fig. I.

24'00 48'00 72'00 96'00 120 O0

T,me

Observed cumulative number of failures as a function of time.

Of POOR Q:JALIT'Y

98 Peter A. Kcdler, Douglas R. Miller

manifestation mentioned above ,,,,'ill be called "failure times', If the failure

times are indexed chronologically they can be represented as

0<_ t I <_ t2 <_t3 <_ t, <_... <_.t, (1)

where tc is the 'current' time, the length of time that the system has been

investigated, i.e. execution time for software. A convenient way to

graphically present these failure time data and stochastic processes is with a

plot of cumulative number of failures versus cumulative time: let

n(t) = max li: t, < t} 0 _< t < tc (2)

be the sample path of such data as depicted in Fig. 1. If system redesigns

successfully remove design flaws, system reliability will improve and eqn (1)

should show a general pattern ofstochastically increasing interfailure times,

and plots of the cumulative number of failures in eqn (2) should show a

positive but stochastically decreasing slope (negative second derivati,,e}.

This phenomenon is called "reliability growth', i.e. the reliability of the

system is improving as successive redesigns remove design flaws. We wish to

make predictions about future behavior of the software, i.e. for t such that

tc<_t.

RELIABILITY GROWTH MODELS

It is convenient to consider eqn (1) as the realization of a random process:

0_< TI < T2-< T, <... (3)

where the T,'s are random variables (the t,'s are real scalars) and the process is

observed for t:0<t_<t_. The stochastic process of which eqn (2) is a
realization is

{N(t) = max(i: T, < t), 0 <_ t} (4)

The stochastic processes, eqns (3) and (4). are 'reliability growth processes'.

Numerous reliability growth models have been proposed for the analysis of

software reliability. The first one specifically for software was proposed by

Jelinski & Moranda. 6 There are numerous surveys "7-_t of the software

reliability growth modeling literature.

There tend to be three general classes of software reliability growth

models: interfai]ure time models, order statistic models, and Poisson process

models. Examples include the Littlewood-Verall model, t2 Littlewood's

Pareto model _3 and Duane's power law nonhomogeneous Poisson

process,l,_._ 5 respectively. (For general discussions of the interrelationships

between these classes of models, some additional modeling considerations,

ilure

(i)

been

¢ tO

ith a

(2)

dgns

n(1)

mes,

)w a

dye).

• the

_h to
that

cess:

(3)

ess is

is a

(4)

'sses'.

4sof

•d by
ware

3wth

3tess

_od's

sson

_hips
ions,

Software reliability growth models 99

derivations of these models from more basic principles, underlying

assumptions and complications, see Gray t6'L_ and Miller. tS) All reliability

growth processes can be thought ofas consisting of noisy behavior around a
smooth trend curve. One obvious way of describing the trend curve is with

the average number of failures occurring by time t, i.e. the expected value of
the number of failures, thus a trend curve for stochastic processes in eqns (3)

and (4) is

M(t) = EI'N(t)] 0 < t (5)

Several members of a logarithmic family of trend (or growth) curves are

shown in Fig. 2. A rough approach to the prediction problem is to pick a

member from a parametric family of growth curves (as in Fig. 2) which best

fits some software failure data (as in Fig. 1) and then extrapolate along the

curve to the right in order to predict the expected number of failures during a

future time interval. In fact, most reliability growth modeling is equivalent to

this kind ofcurve fitting. Sophisticated statistical techniques may be used to

64 00-

48 0O

Fig. 2.

/_
/

1600.

000'
000 40(30 8000 12000 _6000 20000

T,me

Subset of mean functions for a parametric family of reliability growth models with

logarithmic trend.

1oo Peter A. Keiller, Douglas R. Mdler

fit the models. But it had not been proven that these statistical techniques are

superior to a simple qualitative 'eye-ball' fit. This fact should be kept in mind

when interpreting the accuracy of the predictions from reliability growth

models. In particular, these models are not refined enough to distinguish
between whether there are zero bugs or one bug remaining in a piece of

software.
Another conclusion from the point of view that software reliability

growth is noisy behavior around a growth curve can be used in defining a
rich family of reliability growth models: we want a family which is

characterized by the mean function, eqn (5), and we want a rich set of mean

functions. (For a discussion of necessary and sufficient conditions for

reliability growth mean functions, see Miller) s For a nonparametric

approach, see Miller & Gofer. tg) An attractive family ofstochastic processes,

eqn (4), characterized by their mean functions are the nonhomogeneous

Poisson processes (NHPPJ; Musa & Okumota '°'2 t have promoted this idea.
NHPPs have an independent Poisson number of failures in disjoint

intervals:

P(N(t + s) - X(t) = n) = e -__f" .s_-._fm_ (M(t + s) - M(tJ)"11[

0 < t, 0 < s; n = 0, 1,2, 3.... (6)

M 1 Power:

M2 Exponential:

M3 Logarithmic:

M4 Pareto:

M5 General Power:

M6 Weibull:

This characterizes the processes.

We shall use six parametric families of NHPPs, characterized by their

mean functions:

M_(t) = ",'t_

M2(t) = ";(1 - e- *)

M3(t) = 7 log(l + fit)

M.,(t) = ;(1 -(l +]?t)-')

Ms(t) = 7C(1+/_t)-' - l)

M6(t) = _'(I -- exp (-_lt'))

The 'Power' law was first suggested in a reliability growth context by

Duane _'* and specifically as a NHPP model by Crow) 5 The "Exponential'
law is the trend encountered in the Jelinski-Moranda 6 model and the trend

of the Goel-Okumoto 2_ NHPP software reliability growth model. The

'Logarithmic' trend is used by Musa and Okumoto. '°':3 (Figure 2 shows
some of the mean functions for this family.) The 'Pareto' curve occurs in

Littlewood's _3 order statistic model. The "General Power' curve arises

naturally when considering order statistics of independent but non-

identically exponentially distributed failure times, t 8 The 'Weibull' NHPP is

discussed by Musa & Okumoto, 2° Abdalla-Ghaly et al., 7 Miller _8 and

0<_1

0<_

.0<_

O<_,O<P
-1<_<0,0<_

0<_,0<_,0<7

Software reliability growth models 101

eS are

mind

rowth

xguish
_'ce of

_bility

aing a
ich is

mean

IS for

netric

:esses,
neous

s idea.

:sjoint

. (6)

• their

0<7

-xt by
ential'

•trend

I. The

shows

urs in

arises
non-

-IPP is

s and

others. Taken together, these parametric families include many of the

reliability growth models proposed in the literature; see Miller t8 for plots of
selected mean functions of these models.

FITTING MODELS

We fit the six NHPP models (M1, M2, M3, M4, M5 and M6) to data in the

form ofeqns (1) or(2) as depicted in Fig. 1. In effect, for each ofthe above six

parametric families, we want to find the 'best' fitting curve. We use the

method of maximum likelihood as suggested and described by Musa &

Okumoto 2° for fitting these models to data consisting of single sample

paths. For each parametric family we get maximum likelihood estimates

(MLEs) of the appropriate parameters: :c, fl, 7, etc.; this gives us a curve

3 (t) 0 _<r _<to (7)

uniquely determining the MLE NHPP. To solve for the MLEs we used the

Nelder-Meade:'* simplex search algorithm. We wanted a general algorithm

to solve general MLE problems for this study; in practice one would want to
devote more effort to finding the MLEs as Chan 25 does for some models.

There is no unique definition of "best-fitting'. The best way to fit a

stochastic process model to an observed realization of the process is an open

question. As mentioned before, an "eye-baH' fitting may work well. Least-

square or Kolmogorov-Smirnov distances could be used. The definition of

'best-fitting' is certainly dependent on how the fitted curve is to be used. In

our context we could define 'best-fitting" as equivalent to "best-predicting';

Brocklehurst 26 has investigated this approach of fitting some reliability

growth models by optimizing certain quality-of-prediction measures.

We are faced with two problems: finding the best-fitting member of a

given parametric family and choosing among the best-fitting from several

parametric families. We have rather arbitrarily decided to use the MLE for a

given family. To choose among different families we shall try several

approaches: minimum Kolmogorov-Smirmov distance, maximum likeli-

hood and three others (Retro-U, Retro-Y and Retro-PL) to be described
later.

PREDICTIONS

Various predictions can be made from the fitted NHPP with mean function
(eqn (7)): the expected number of failures during a future time interval

(t, t + s]" ,ft(t + S)- ,¢t(t)

102 Peter A. Kedler, Douglas R. Miller

the current failure rate, at time t¢: th(t¢), where

= d .fl(s)].=,

the time until a target failure rate

%: to = rain It: rfi(t) = %}

the distribution of the time until next failure from the current time

re: _o(s) = 1 - P(O failures in (r¢, t¢ + s])= 1 - exp(-[,Q(t¢ + s) - ,O(t¢)])

and the density of time until next failure from current time

d _(s)to:f,o(s)=

A standard approach is to consider the modeling, fitting and prediction

steps as separate activities. Since the ultimate goal is good prediction,

Abdalla-Ghaly et al.7 argue convincingly that an integrated approach

should be taken: they introduce the idea of a "prediction system' which

integrates the above three phases. We are taking such an integrated point of

view in this paper.

U_

f

T

T

d

e'

c

0

12".

C

q

QUALITY OF PREDICTIONS

We wish to evaluate the accuracy of the predictions of future failure

behavior which we make. If we predict an observable quantity, we can wait

and compare the observation with the prediction, and then compute a

measure of discrepancy. When predicting the number of failures in finite
future time intervals, the error is simply the difference between the predicted

number and the observed number. For a given piece of software undergoing

execution, failure and fix, as time passes we can make predictions up to

various time horizons, then when that horizon is reached we can compare

the prediction with observation. So for a given piece of software we can

make a sequence of predictions which can be checked against observation;

from this a measure of quality-of-prediction can be computed.

When we use a reliability growth model to predict the distribution or the

density of the time until the next failure, we must compare predicted

distributions to observed times in order to get a measure of quality-of-

prediction. The procedure is as follows: after each failure is observed, the

model is fitted to the data observed, thus far giving a new estimated mean
function. The mean function fitted to the first i observed failures is denoted

as 37/i(t), 0 < t. The estimates of the distribution and the density of the time

Software reliability growth models 103

'°)])

:tion

tion,

oach
hich

ntof

ilure

wait

tte a

inite

icted

:oing

.p to

,.pare
: can

tion:

r the

icted

','-of-
, the

nean

oted

time

until the next failure are then computed:

- d
_.t(s) =/O,,(s) = 1 - exp (- [,(,[,(t, + s) - .fl,(t,)]) f]. t(s) = dss _` t(s) i > 1

Then the next failure is observed, at time ti+t, so the interfailure time is

Xi÷ I = li .,. 1 -- I i

Thus we have a sequence of predictions of successive interfailure time

distributions and a sequence of observed interfailure times. The goal is to

evaluate how well the predictive distributions actually predicted the

observed interfailure times. We would like a quantitative measure of quality-

of-prediction. Littlewood and co-workers 7''5'2v have provided three such

measures, which we now summarize. (These measures are used mainly for

comparison purposes. It is difficult to interpret the deviations

quantitatively.)

The first quality-of-prediction measure is the 'u-plot': it is ,.,,'ell known that

U = Fx(.Y) has a uniform distribution on the interval [0, I]. Using this fact, if
-1() is the true distribution of X,.I then u,,.=f,,.t(x,.t) will be an

observation from a U[0, 1] distribution. Thus the empirical distribution

formed from the u's should be closed to that of U[0, 1]. lf we observe no +n

failures, starting to make predictions after the noth failure, the plot of

[(u 1.i_('l + I)).i= 1.2, 3..... n]

is the u-plot. The maximum deviation of the u-plot from the identity

function is a measure of quality-of-prediction.

The second measure of quality-of-prediction is the "y-plot': if the

predictive distributions are good the u's should look like a random sequence

of independent U[0.1] variables, and -log(l-u)'s like exponential
random variates. In this case, let

i

1"i =

j=!

and plot the

n

ZIog(l - u,o+j)/'; Iog(l - u_,÷j) i= i. 2.3 n
j=t

pairs ._(.v_, i/(n + 1)). i-- 1, 2, 3 n_. If the predictive

distributions are good. this plot should be close to the identity function. A

quantitative measure of the quality-of-prediction is the maximum deviation

between the y-plot and the identity function.

The third measure of quality-of-prediction is the prequential likelihood:

based on Dawid's -'8 generalization oflikelihood to a sequential situation, we
have

pl

P L. = .o +i(x.o + i)

i ffi l

ORIGI_L FAG.E IS

OF POOR QUAI,

Z _

104 Peter A. Kedler, Do_.las R, Miller

For comparison purposes, the best predictive system should have the largest

prequential likelihood.

For a detailed discussion of these threemeasures ofquality-of-prediction,

see Abdalla-Ghaly et al., _ Chan :s and Keiller et al.'-" These three measures

give a dynamic real-time evaluation of bow well a given parametric model

has done predicting interfailure times up to the present. It would seem

logical to calculate the next prediction from the parametric family which has

performed best up to the present on theparticular software failure data set

under consideration. These three mea_ares give a basis for making this
choice.

There are other possible measures of quality-of-prediction. For example,

one such measure could be based on past predictions of the number of

failures to be observed in finite time katervals which have subsequently

elapsed.

of

pr_

th'_

of"

N

SUPER MODELS m

We consider eight super models. A _per model is a set of parametric

reliability grov_th models and a selecffon criterion; for a given software

failure data set and for a given time, the selection criterion chooses the

parametric model in the set that is to be used for making predictions of

future failure behavior. As time passes for a given data set, a given super

model may change its choice of parametric family to use for predictions.

Our procedure for a super model is asfotlows: using maximum likelihood

estimation, we fit all six of the parametric models (M I-M6). Next, the

selection criterion picks one parametricclass based on the fitted models. The

current fitted model of the chosen classis used for making predictions at the
current time.

We consider two goodness-of-fit criteria: Kolmogorov-Smirnov devia-

tions between the fitted mean functiom and the sample path, i.e.

sup [,Q(ti- n(t)l
O_<f_<tc

and the maximum likelihood of the fit_! models. We comment that three-

parameter models (M4, M5 and M6) _ould fit the data better than two-

parameter models (M 1, M2 and M3), aM some correction should be made to

the goodness-of-fit criterion to reflect _is; see Akaike. -'9 We do not pursue

this here. It is another example of one at'the open questions in this research
area,

We consider three pure quality-of-p_diction measures: the u-plot, the y-
plot and the prequential likelihood. U_/_g these criteria requires fitting each

V

rl

d

ORfGJ_L P/:,_ IS

(_F POOR QUALRY

gest

iOn,

|res

_del

_'em

has

set
this

ple,
of

_tly

ch

Soft,rare reliability growth models I05

of the six NHPP models (MI-M6) after each failure and calculating the

predictive distribution and density of the time until next failure. So these

three super models require more computationally intensive implementation.

Finally, we consider three hybrid super models. We use the three quality-

of-prediction measures in a goodness-of-fit mode. At current time, tc, the six

NHPP models (M I-M6) are fitted to the data; each fitted model is then used

retroactively to predict ('retrodict') the already elapsed interfailure time
distributions and densities; from these retrodictions and the observed data,

u-plots,).-plots and prequential likelihood can be computed, and the best

fitted model chosen from among the six simple models (M l-M6).

We comment that it is possible to define other selection criteria. In a

related piece of work, Littlewood & Keiller 3° and Chan 3°_ have shown how

to improve the prediction of the time until next failure by adapting a

reliability growth model, basing the adaption on past quality-of-prediction.

To summarize, our eight super models are all based on six NHPP models

(MI, M2, M3, M4, M5 and M6). The selection criteria for the eight super
models are:

M7 Maximum likelihood

M8 Minimum K-S distance

M9 U-plot

M I0 Y-plot

M 11 Prcquential likelihood

M 12 Retro. (.'-plot

MI3 Retro. t'-plot
M 14 Retro. Pk

EXPERIMENTS

We investigate the performance of 14 reliability growth models: six simple

models (M l-M6) and eight super models (M7-M 14). We see how well the

different models can predict the number of new failures manifested during
finite future time intervals.

We base our experiment on 20 sets of software failure data, denoted
DI-D20 in Table 1. The first 15 data sets are the same as those used in

performance experiments by Musa and co-workers, 2°'2t'3t with two

modifications: D5 consists ofonly the first 288 interfailure times of Musa's 32

System 5 because a major code change occurred at that point; D 11 consists
of the last 100 interfailure times of Sukert's 33 data set because the data set

was huge with several major changes. The data consist of execution times

between successive failures. To give the reader a rough idea of the data, we

106

Data set

designation

Peter .4. Kedler, Douglas R. Mtllcr

TABLE I

Summary of Software Failure Data Sets

Original source Designation in Designation in

and reference original source re.ferences '°" _ i

DI .Musa }' I TI

D2 Musa 3" 2 T2

D3 %1usa 3: 3 T3

D4 M usa 3" 4 T4

D5 Musa 3: 5 T5

D6 Musa 32 6 T6

D7 Musa _: 27 T16

D8 Musa 3" 40 TIT

D9 %1usa 3_" -- T 18

DI0 Musa 3" 17 TI9

DII Sukert 33 -- T20

D12 Musa _' -- T21

D13 Miller 3s ISEE-C T22

D14 Miller 3s AEM T23

DI5 Miller sJ SMM T25

DI6 Abdalla-Ghaly et al. 7 Fig. 2

DI7 Abdalla-Ghal._ et al." Fig. 3

D 18 %!oek 56 A --

DI9 Mock 36 B --

D20 %lock _ C --

present them in an aggregated form in Table 2: we split the total cumulative
time for each data set into 10 equal intervals, and show the cumulative

number of failures occurring up to each of 10 elapsed time points. From

Table 2 it is possible to construct very rough plots of reliability growth as in

Fig. 1. The original raw unaggregated data are used to fit reliability growth

models.

The experiment is designed as follows. For each data set we select nine

time points, equal to k/10 of the total execution time for the entire data set,
k = 1, 2, 3 9; for each of our six simple models (M I-M6), we find the M LE

and make predictions. We have 180 (= 9 x 20) data intervals: [0,(k/10)T_'°'],

k= 1,2,3,...,9, j= 1,2,3,...,20, where T_'°' is the total execution time for

data set Dj. Using maximum likelihood estimation, we fit the model Mi to the

failure data observed from data set Dj in the interval [0, (k/10)Tj_°_], then the

fitted model is used to predict the number of failures to occur in the future

interval ((k/10)Ty, T_'°'], for k = 1, 2, 3,..., 9, j = 1, 2, 3,..., 20 and i=

1, 2, 3..... 6. Let ti,(j, k) equal the number of predicted failures for data set Dj

in the time interval ((k/10)Tj t°', T_'°'], predicted by model Mi fitted to data
observed from data set Dj over the time interval [0,(k/10)Tj_°']. Let n(j,k)

,tire

,tire

rom
as in

_wth

Software reliability growth models

TABLE 2

Cumulative Failures Occurring in Percentage of Total Time

107

Data Elapsed percentages of time

set
10% 20% 30% 40% 50O/o 60*/0 70% 80o/0 90o/o I00%

DI 49 74 85 93 104 114 122 t28 132 136

D2 20 28 30 41 42 46 48 50 52 54

D3 22 24 28 30 30 33 35 35 36 38

D4 24 37 45 50 50 50 51 51 51 53

D5 53 103 153 172 192 235 251 264 273 288

D6 15 26 32 33 47 58 66 68 69 73

D7 15 23 25 28 31 33 39 40 40 41

D8 63 75 76 78 79 79 85 89 92 101

D9 74 103 123 137 146 146 152 155 158 163

DI0 7 16 24 27 30 33 36 36 36 38

DII 28 50 54 68 79 87 93 97 99 100

DI2 14 20 27 33 38 50 60 65 70 75

DI3 23 38 61 62 73 80 98 102 110 . 117

DI4 25 48 78 89 98 127 133 142 167 179

DIS 44 69 95 106 129 137 162 170 185 210

DI6 15 28 39 49 54 60 68 71 75 81

DI7 36 74 100 117 145 158 175 189 198 207

DIS II 20 29 31 33 38 40 41 42 43

DI9 21 27 32 33 34 35 36 37 38 40

D20 2 4 6 I0 12 14 14 14 16 17

equal the observed number of failures for data set Djin ((k 10)T}°_, Tj'°_]. The

prediction errors are

ei(j, k) = ;t,(j, k) - n(j, k)

and the relative prediction errors are

r,(j, k) =(tii(j, k) -- n{j, k))/n(j, k)

i= 1..... 6, j= I 20 and k = 1..... 9

(For the 20 data sets there happens to al_vays be at [east one failure in the last

interval, so we avoid division by 0.) The prediction errors and the relative

prediction errors for model M3 are tabulated in Tables 3 and 4, respectively.

For each super model (M7-M 14) we have a selection criterion. Based on

these criteria, each one of the super models chooses one of the simple models

and makes a prediction. For i= 7, 8,9 14, j= 1, 2, 3 20 and k =

1, 2, 3..... 9, let ci(j, k) equal the index of the simple model (1, 2, 3, 4, 5 or 6)

that super model Mi likes the best for data from data set Dj over the interval

[0, (k/10)T;°']; for example, Table 5 shows the choices made by model M8,

which uses Kolmogorov-Smirnov goodness-of-fit as its selection criterion.

-'"

7_

108 Peter .4. Kedler, Douglas R. Mdler

TABLE 3

Prediction Errors, e(j,k), for Model M3

Data Percentage of time elapsed

set

10% 20% 30% 40% 50% 60% 70% 80% 90%

D1 -228 10 -87 -12"0 -6"4 -1'7 0'8 1"4 0'4
D2 -2'7 -4"7 -II'0 3"6 -1"3 0"5 -0'2 -0'4 -0"3
D3 19'9 -0'8 0"5 -0"2 -2"7 -0"7 0'1 -1"2 -I'1
D4 25"1 21'2 20"0 17"1 9"5 5'2 3"4 1"2 -0"6

. - 3_ 222"0 0"5D5 _4"0 __7"0 26'62 0"8 42"6 23"4 11"2
D6 -36.5 -16-3 -18.6 -27-1 -2.4 148 148 52 0.1
D7 1090 10.8 -0.8 - 1.6 - I.I - 1.5 3.8 2.4 0.5
D8 5-1.2 20.6 2.6 -3-9 -8.5 - 12-7 -91 -7.6 -6.9

"_"_ 2.6 2.7D9 -19.5 -1.1 87 12.7 I_._ 0.4 I.I
DI0 32.0 42.0 42.0 16.0 8.8 6.8 6.2 2-3 -0.2
DII 1790 1034 -4.1 7'9 11'9 11-2 96 6-3 25

D12 -53-4 -45"3 -344 -27'5 -240 -29 81 25 07
DI3 1130 -108 60-4 -177 -11-7 -135 51 -16 -04
D14 -1159 -62-7 716 -231 -36"5 6-5 -135 -174 08

- __3 .3D15 --17"4 -_;48 -8- -48"2 --26'0 36'3 14"1 200 14"7

DI6 -07 38-1 13-2 13-6 0.7 -06 31 -0-9 - 1.7
D17 - 1231 331 4.4 - 141 16.4 39 7.0 6.8 22

DIS -9-3 10.7 27.6 63 18 52 38 1.9 0.8
DI9 38 2.7 48 1.7 0"2 -06 - IO - 1-1 - 11
D20 -10.1 -81 -4.0 80 70 6'3 09 -I-I 01

Next, model Mi predicts that pi,(j', k) = tic,(j-.kj(j, k) failures will occur for data

set Dj over the time interval ((k 10)Ty, _°']. Errors are then computed as

before; for example, Table 6 shows the relative errors for model M8.

We wish to compute some summary statistics of how the different models

perform over the different data sets, Djj= 1,2,3 20. There does not seem

to be any obvious best way to summarize the performance. It seems that

relative error is preferred to absolute error in order to prevent one or two

data sets with large numbers of failures dominating the summarizing

statistics. Also, initially we want to summarize over independent test cases.

Therefore we consider average relative errors (averaged over the 20 data

sets) for each of the nine elapsed time percentiles. We consider two averages:

The average bias:

The average deviation:

20

_(k) = _ r,(j, k)/'20

./=1

20

_(/<) -- _ Ir,(j, k)l/20

./=1

)0%

lata

J as

lcls

:era

hat

two

:ing

ses.

iata

_es:

Software reliability growth models

TABLE 4

Relative Prediction Errors. rlj, k), for Model M3

Data Percentage of time elapsed
581

10% 20% 30% 40% 50% 60% 70% 80% 90%

DI -0.26 0-02 -0.17 -0.28 -0.20 -0.08 0.06 0.17 0.09
02 -0.08 -0.18 -0.46 0.27 -0-ll 0.06 -0.03 -0.10 -0.14

D3 1.24 -0.05 0.05 -0.02 -0-34 -0.15 0.03 -039 -0-57
D4 087 1.32 250 571 3-17 1.72 1.70 058 -0.29
D5 103 1-23 164 023 001 080 063 047 003
06 -0.63 -0-35 -0.45 -0,68 -0-09 0.98 2.11 1-05 0.01
D7 4,19 0-60 -0,05 -0.12 -0.11 -0.19 1.91 2.44 0.49
D8 1.43 0.79 0.10 -0.17 -0.39 -0-58 -057 -0.63 -0.77

09 -022 -0.02 0.22 0.49 0.72 0.15 0.25 0.05 -0.22
DI0 1,03 1.91 3.00 1.45 1,10 1,36 3.09 1-14 -0-10
DII 2,49 2,07 -0.09 0.25 0-57 0.86 1.32 2.10 2.53
D12 -0.87 -0-82 -0.72 -065 -065 -O12 054 025 O14
DI3 1.20 -0.I4 1-08 -0.32 -0.27 -0.36 027 -0.tl -0.06
DI4 -0.75 -0.48 0.71 -0.26 -0.45 0.13 -0,29 -0.47 0-07

DI5 -0,10 -0.39 -0-25 -0-46 -0.32 -0-50 -0.29 -0.50 -0.59
DI6 -0,01 0.72 031 043 0.03 -003 0,24 -0-08 -0.29
DI7 -0.72 0.25 0-04 -0-16 026 008 022 038 025
DIS -0.29 0-47 1.97 0.52 0,18 I 05 1,26 096 0.76
DI9 0.20 0.2I 060 0.24 0(13 -0.11 -0.24 -0.37 -0-55
020 -0.o7 -0.63 -0.3b I.J-I 14[) 2-J1 0-29 -036 0,0,_

109

These two average performance measures are tabulated in Tables 7 and 8.

respectively. Finally, succumbing to the temptation to try to quantify the

overall behavior of each model, we compute two grand averages:

Grand average bias:

[l,(k), 9Grand average deviation:

These grand averages are tabulated in Table 9 for the 14 models.

There are many other ways to summarize data. M usa and co-workers -'°-3 t

used a normalized error (dividing the prediction error by the total number of

failures in the data set); they then summarized by considering the median

normalized error at each elapsed time point. The interested reader has

probably already thought of other variations. One of the open problems in

II0 Peter A. Keiller, Douglas R. Mtller

TABLE 5

Simple Models Chosen by Super-Model M8

Data Percentage of time elapsed
$1,"t

10% 20% 30% 40% 50% 60% 70% 80% 90°,6

D1 M I M I M6 M6 5'I6 M6 5't6 M6 M6

D2 M6 5'12 M2 MI MS MS MS M5 MS
D3 M4 M6 M6 M6 M6 M3 M3 M3 M3
D4 M2 M6 M2 M2 5'12 M6 M2 M2 5'16
D5 5'|6 M6 MI M2 M2 M2 5'|2 M2 M2
D6 5,I6 5't5 5'15 M3 M2 M2 M2 Nil M5
D7 k16 M6 M6 M4 M4 M4 M3 M3 5't3
D8 X14 5,12 M2 M2 M2 M4 M4 M4 M3

D0 M2 M3 M3 M3 M3 M3 5't3 M3 M3
DI0 5'11 M6 MI .",t6 M6 M4 M4 M6 5'16
Dll MI M6 M6 M6 M6 MI M3 NI3 MS
DI2 5'15 5'I5 MI MI M1 M4 M3 M2 M2
DI3. MI M2 MI M6 M6 M6 M3 M4 M4
DI4 5'16 M3 M2 M3 5'!6 MI M3 M3 M5

DI5 M6 M2 M5 M5 M5 MS M5 M5 M5
D16 M6 M5 M2 5'13 M6 5'16 M3 M2 5'!2
DI7 M5 MI MI M2 M3 M3 5'13 M3 M3
DIS M6 5'!5 ,',,15 M2 5'I6 M2 M2 M2 5'16
DI9 M6 M4 M3 M6 M6 M6 M6 M6 M6

D20 M6 M2 M3 Nil M4 M4 M2 M6 M6

this research area is to identify the best ways to define and evaluate

performance statistics.

INTERPRETATION OF EXPERIMENTS

There is a great temptation to end such an experimental investigation with

the conclusion: 'The winner is model...'. That would be very misleading for

this type of experiment. The experiment is based on only 20 data sets. The

statistical estimation methods, performance measures and general design of

the experiment are quite arbitrary; other choices could be made. It is hoped

that this experiment gives rough ideas of how reliability growth models

perform, what can be expected of them, and of numerous open questions

arising about their usage. However, there are several observations that can

be made from this experiment.

A cursory glance at the size of the errors in Tables 3, 4, 6, 7, 8 and 9 leads us

to the conclusion that the predictions have some value. They are not

TABLE 6

Relative Prediction Errors, _j,k), for Model M8

Data Percentage of time elapsed
set

10% 20?/0 30% 40% 50% 60% 70% 80?6 90?/0

D8

D9

DI0

DII

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

D20 -100 -0.93 -0.36

h

'r

d

f

J

S

s

1

TABI.E 7

A_erage Rclati_c Bias of Predictions. _"

.llodel Percentage ¢_J time el¢lpsed

10% 20% 30% 40% 50% 60% 70"8 80% 90%

M I

M2

M3

,14

M5

M6

M7

M8

M9

MI0

MII

MI2

MI3

MI4

1-56 1-24 1.25 1.32 0.97 0.99 1-38 099 0.54

-0.03 -0-23 -0.06 -0-35 -0.39 -0-15 0.05 -0.23 -0-41

0.45 0.33 0.48 0.38 0.23 0.36 0.62 0-33 0-04

0-30 -0.06 -001 -0.03 -0.t8 -0-29 -0-20 -0.43 -0-55

105 0.84 0.91 0.94 0.47 0-58 0.92 0.65 0.31

1-12 -0.15 -0.12 -0.24 -0.44 -0-18 -0.14 -008 0.32

0-61 0.21 0'33 0.28 0.09 0.24 0-60 0.28 0-07

0-55 -0.21 0-24 -0-24 -0-31 0.10 0-39 006 -0.06

0.25 0.24 -0.04 0-08 -0.07 0.19 039 0.38 0'52

156 0.64 0.65 0-I1 0.06 0.35 0-76 0-49 0.20

0.82 0-49 0-77 0.29 0-10 0.27 0.47 0.50 0-59

0.25 -012 0.08 0.17 -002 -0-01 0.23 0.27 -0.22

156 0-46 0-77 0.13 -0-13 0-19 053 0-01 -0.04

082 0.11 0.32 -0.17 -0.34 0'15 0.27 0-01 -026

112 Peter .4. Ketller, Douglas R. Miller

TABLE 8

A_erage Relative Deviations of Predictions. ,7

.tlodel Percentage _f time elapwd

10% 20?4 30% 40% 50% 60% 70% 80% 90%

M1 166 1.31 130 1.41 I-IM 106 141 IO9 0.70
M2 103 081 0'91 0-67 059 066 066 0-57 0.47

M3 0-91 063 0.74 0-69 052 0.57 0.77 063 0.40
M4 1'03 0.87 091 090 0.72 0.74 0-79 065 060
M5 1-39 I 03 106 112 063 0.71 IO0 089 0.59
M6 2-25 094 0-82 084 0-64 0-67 056 0-89 126
M7 1-13 090 0.89 080 0-76 0.94 126 0.89 0.79
M8 I56 0.73 0.87 068 0.57 0-70 0.70 0.64 0.57
M9 122 0-87 0.77 066 0.57 0-74 0-78 085 IO9

M 10 166 1.05 1.16 061 054 0.78 105 0-91 0.76
M I I 1,48 0.87 1.16 0-63 0-39 0-64 0.77 0-90 1.07
M 12 1,22 0.76 0.97 0-91 0.75 0.67 0-72 0-82 049
M 13 166 083 129 0.75 0.44 0.72 083 060 0-60
M 14 1-48 0-72 103 0-65 057 062 0.75 062 0-43

extremely accurate, but they are good enough to be helpful in some

situations. It appears that reliability growth estimates may be useful for

forecasting future maintenance activities on moderately reliable software.

IFor a successful application of software reliability gro_,,th modeling to

certifying software, see Currit et al. 3v)

This experiment is strongly conditional on the data sets used. lfone of the

simple models (M l-M6)was truly a superior fitting model, we would expect

that model to perform best, and we would expect super models (M7-MI4)

with good selection criteria to consistently choose that simple model. The

fact that this is not happening suggests that none of the simple models is a

superior fit. Furthermore, the super model approach is not an improvement.

This needs further study, perhaps in a more controlled experiment based on
Monte Carlo data.

There is an interesting trade-offbetween the two-parameter simple models

(M1, M2 and M3) and the three-parameter models (M4, M5 and M6). The

TABLE 9

Summary Performance Measures ['or 14 Models

M1 M2 M3 M4 M5 M6 M7 M8 M9 MIO MI1 MI2 MI3 M14

1-14 -0.20 036 -0.16 0.74 0-01 030 0-06 0-22 0.54 0-48 0.07 0-39 0-10

1.22 0.71 0.65 0-80 0-93 0-98 0.93 0.78 0-83 0.96 0.88 081 0.86 0-76

Software reliability growth models 113

qTle

for

.ire.
', to

dels

The

three-parameter models should generally fit better because they have richer

flexibility. However, it is more difficult to fit a higher parameter family,

especially with a general-purpose search algorithm like Nelder-Meade; so

we may not always be getting the best-fitting member of a three-parameter

family. Thus the three-parameter sirnple models may not be performing as

well as they might with a perfect search algorithm.

There is also a trade-off between 'goodness-of-fit' and 'quality-of-

prediction'. A model that fits the observed data well is not guaranteed to give

good predictions into the future, especially if it is a rich family parameterized

with several parameters. (Akaike -'9 suggests handicapping parametric

families based on the number of parameters.) The idea of an integrated
'prediction system '7 suggests that 'quality-of-prediction' measures should be

used for fitting models. However, in our experiment there is not an obvious

difference bet_,een the super models based on the two different concepts.
There is an effect caused by how the prediction errors are measured. A

model may overestimate the number of future errors by any amount, but it

may underestimate the number by at most 100%. This means that a few wild

overestimates will hurt the average performance (Tables 7, 8 and 9) much

more than wild underestimates (which is probably a more serious error).

This may be making model M2 (which tends to underestimate) appear better

than it really is and model M ! (which tends to overestimate) appear ,xorse

than it really is. A more reasonable error summary might weight an

"underestimate by one-half" equivalent to an "o_erestimate by two-fold', for
example. There are other possibilities: in fact. how to evaluate and

summarize performance is an open question.

Model M3 seems to be doing slightly better than all others. This model

also performed the best in Musa & Okumoto's '° performance studies using

different summary statistics (median normalized prediction errors).

Nage138'_0 and others have observed a log-linear pattern among occurrence

rates of bugs in a program and hypothesize that this may be a frequently

occurring pattern: Miller _8 has sho,,vn that this pattern is approximately

modeled by model M3. Another interesting fact is that model M3 plays a

central role among the models M l-M5: see Miller. _s So it is not surprising
that model M3 scores best in Table 9. But. of course, it is all conditional on
the 20 data sets.

Phillips (see Adams _'°) has observed that the occurrence rates for bugs in

some large operating systems show a power law pattern which is equivalent
to model M 1 (see MillerZS), but model M 1 does not perform well for our 20

data sets. For different sets ofdata the performance ofM 1 and M3 might be

reversed. This is why we want the freedom to pick the best model for each

piece of software. These experiments imply either that this is impossible or
that we have not figured out how to do it yet.

114 Peler ,4. A'ctlter, Douglas R. Mdler

Looking at the prediction errors at the 90% elapsed time point in Tables 3,
4 and 6 reveals moderately sized errors. This should be a fairly easy

prediction problem: we are predicting for a future time interval equal in

length to ¼ of the previous observed interval. From these moderately sized
errors, we conclude that it is not reasonable to ask these reliability growth

models to accurately predict that software will perform error free for long
future time intervals.

NON-APPLICABILITY TO SAFETY-CRITICAL SOFTWARE

Safety-critical software must be extremely reliable. The question is how to

achieve extremely high levels of reliability. The reliability grov, th scenario

would start with faulty software. Through execution of the software, bugs

are discovered. The software is then modified to correct for the design flaws

represented by the bugs, Gradually the software evolves into a state of

higher reliability. There are at least two general reasons why this is an

unreasonable approach to highly reliable safety-critical software. The time

required for reliability to grow to acceptable levels will tend to be extremely

long. Extremely high levels of reliability cannot be statistically guaranteed

a priori.
For a discussion of the limitations of the statistical approach to high

reliability, see Miller. "_'5 For a good discussion about the reliability growth

scenario, see Gray) 6"_ Gray points out many aspects of reliability growth,

some of which are difficult to quantify and thus ignored by the usual

reliability growth models; ignoring these aspects may not lead to

unacceptable results when dealing with nominal levels of reliability, but they

cannot be ignored when dealing with extremely high levels of reliability. See

Hamlet "_l'_'z for discussion of some additional complications.

CONCLUSIONS

We conclude that reliability growth models are useful for predicting the

number of failures over finite future time intervals when we are dealing with

software which is of low or moderate reliability. Maintenance of large

moderately reliable software systems might be usefully predicted by these
models.

There are numerous open questions about software reliability growth

models. When making predictions into the future, it is very important to use

a good model; how to choose the best model is an open question. The

quantification of prediction errors (by confidence intervals or other

m _

ln

rr2

ir:

u

f)

gr

Software reliability growth models 115

:s3,

:asy
I in

ized

wth

ong

the

,ith

r - e

_ese

,,.th

use

rhe

her

methods) is yet to be solved. The best ways to evaluate performance of
models have not been identified.

Our experiment shows that an apparently reasonable way to improve

reliability growth modeling prediction based on super models results in no

improvement. This may be due to the particular data sets we used or to other

factors mentioned in the paper. A controlled Monte Carlo study may be

useful in answering these questions. Regardless, the experiment reveals some

of the problems arising in reliability growth modeling.
Through this experiment and the errors calculated, we have tried to

convey a rough idea of how well software reliability growth models perform.

ACKNOWLEDGEMENTS

P. A. Keiller thanks Fred Waters for many helpful discussions. D. R. Miller

gratefully acknowledges research support from the National Aeronautics
and Space Administration, Grant NAG 1-771.

REFERENCES

I. Eckhardt. D. E. & Lee, L. D.. A theoretical basis for the analysis ofrnultivcrsion
soft,rare subject to coincident errors. IEEE "]'r_l_t.s_lctions {n_ S+_tware

Engim'erMg, S E- 12 (1985) 1511 - 16.

2. Littlewood, B., A reliability model for s,_stems _ith Marko_ structure. ,4pp/ied
Statistics, 24 (1975} 172-7.

3. Littlewood, B. & Miller, D. R.. Conceptual modelling ofcoincident failures in
multiversion software. IEEE -l-raltsactions opt Software E, ghwering (in press).

3a. lannino, A., Musa, J. D., Okumoto, K. & Littlewood, B.. Criteria for software
reliability model comparisons..-IC31 Sigsofi Software E,_gineering ,Votes, 813)
11983) 12-16.

4. Miller, D. R., Making statistical inferences about software reliability. 1986 Joint
Statistical Meetings Invited Paper. Chicago. August 1986. Available as CR-
4197, National Aeronautics and Space ,Administration, December 1988.

5. Miller. D. R., The role ofstatistical modeling and inference in software quality
assurance. In Software Cert([ication, ed. Bernard de Neuman. Elsevier Appliecl
Science, London, 1989, pp. 135-52.

6. Jelinski, Z. & Moranda, P. B., Software reliability research. In Statistical
Computer Performance Eraluation, ed. %'. Freiberger. Academic Press, New
York. 1972, pp. 465-84.

7. Abdalla-Ghaly, A. A., Chan, P. Y. & Littlewood, B., Evaluation of competing
reliability predictions. IEEE Transactions on Software Engineering, SE-12
(1986) 950-67.
Dale, C. J., Software reliability evaluation methods. ST-26750, British
Aerospace, September 1982.

116 Peter A. Kedler, Douglas R. ._tiller

9. Dale, C. J., Software reliability models. In Sofmare Reliahilit,w State of the Art
Report t4.2, ed. A. Bendell & P. Mellor. Pergamon lnfotech, London, 1986,

pp. 31-44.
10. Farr, W. H., A survey of software reliabi]ity modeling and estimation. AD-

A154.874, Naval Surface Weapons Center, Dahlgren, VA, 1983.

11. Goel, A. L., Software reliabilit) modelling and estimation techniques. RADC-
TR-8,,-,63. Rome Air Development Center, Griffiss Air Force Base, New York,
1982.

12. Littlewood, B. & Verrall, J. L., A Bayesian reliability growth model for
computer software, Journal of the Royal Statistical Saeie(v, Series C (Applied
Statistics_, 22 {1973) 332-46.

13. Littlewood. B., Stochastic reliability-gro'xth: a model for fauh-removal in
computer-programs and hardware-designs. IEEE Trmlsactions an Reliability,
R-J0 (19811 313-20,

14. Duane. J, T., Learning curve approach to reliability monitoring. IEEE
Transaction._ on Aerospace, AS-2 (19641 563-6.

15. Crov_, L. H.. Reliability analysis for complex repairable systems. In Rcliahilicy
,ml Bie,uetry: Stati._tica1.4natysis ofL(teh'ngth, ed. F. Proschan & R. J. Serfling.

SIAM, Philadelphia, PA, 1974, pp. 379--410.
16. Gray, C. T., Superposition models for reliability grov.th. PhD thesis, University

of Birmingham, 1985.
17. Gray, C. T., A framework for modelling software reliability. In So/hvare

Reliahilitr: State QfthF Art Report 14.2, ed. A. Bcndcll & P Mellor, Pergamon
lnfotcch. London, 1986. pp. 81-94.

18. Miller, D. R., Exponential order statistic models ofsoftware reliability gro_ th.
CR-3909, National ,Aeronautics and Space Administration, July 1985.
(.Abridged version: IEEE Transactions on Software Engt)leering, SE-12 {19861
12-24.)

19. Miller, D. R. & Sorer, A., A nonparametric approach to software reliability
using complete monotonicity. In S_tware Reliahility: State _(tlle Art Report
14:2, ed. A. Bendell & P. Mellor. Pergamon Infotech. London, 1986. pp. 183-95.

20. Musa. J. D. & Okumoto, K., A logarithmic Poisson execution time model for
software reliability measurement. Proceedings of the 7th International

Conference on Software Engineering. IEEE Computer Society Press, Washing-
ton, DC, 1984, pp. 230-8.

21. Musa, J. D. & Okumoto, K., A comparison of time domains for software
reliability models. Journal of Systems and Software, 4 {1984) 277-87.

22. Goel, A. L. & Okumoto, K., Time-dependent error-detection rate model for
software reliability and other performance measures. IEEE Transactions on
Reliability, R-28 (1979) 206-11.

23. Okumoto, K., A statistical method for software quality control. IEEE

Transactions on Software Engineering, SE-I1 (1985) 1424-30.
24. Nelder, J. A. & Mead, R., A simplex method for function minimization.

Computer Journal, 7 (1965) 308-13.
25. Chan, P. Y., Software reliability prediction. PhD thesis, City University,

London, 1986.
26. Brocklehurst, S., Private communication, 1988.

27. Keiller, P. A., Littlewood, B., Miller, D. R. & Sofer, A., Comparison of software
reliability predictions. 13th blternational Syrnposium on Fault-Tolerant

"Art
986,

DC-

"ork,

for

_lied

d in

,qity,

EEE

rsity

,tYird

'11on

for

rgEE

sity,

Sofmare refiability growth models 117

Computing, Digest of Papers. IEEE Computer Society Press, Washington, 1983,
pp. 128-34.

28. Dav,'id, A. P., Statistical theory: the prequential approach. Journal of the Royal
Statistical Society. A, 147 (1984) 278-92.

29. Akaike, H., Prediction and Entropy. Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin, USA, June 1982.

30. Littlewood, B. & Keilter, P. A., Adaptive software reliability modelling. 14th
In ternational Symposium on Fault- Tolerant Computing, Digest of Papers. I E E E
Computer Society Press, Washington, 1984, pp. 108-13.

30a. Chan, P. Y., Adaptive models. In Software Reliahility: State of the Art Report
14:2, ed. A. Bendell & P. Mellor. Pergamon lnfotech, London, 1986, pp. 3-18.

31. Musa, J. D., lannino, A. & Okumoto, K., Software Reliabilitr: Measurement,
Prediction, Application. McGraw-Hill, New York, 1987.

32. Musa, J. D., Soft,,are reliability data. Data and Analysis Center for Software,
Rome Air Development Center, Rome. New York, 1979.

33. Sukert, A. N., A software reliability modeling study. Rome Air Development
Center. Technical Report RADC-TR-76-247, Rome, New York, 1976.

34. Musa, J. D., Pri,,ate communication. 1988.

35. Miller, A. M. B., A study of the Musa reliability model. MS thesis, University of
Maryland, College Park, MD, 1980.

36. Moek. G., Comparison of some software reliability models for simulated and
real failure data. 4th FASTED (International Association of Science and

Technology for Development) International Symposium and Course "Model-
ling and Simulation', Lugano, Italy, 21 -24 June 1983.

37. Currit, P. A., Dyer, M. & Mills, H. D.. Certifying the reliability of software. IEEE
Transactions ,m Software Eitgim'erhtv. SE-i 2 (1986) 3 - 11.

38. Nagel. P. M. & Skrivan, J. A., Software reliability: repetitive run experimenta-
tion and modeling. NASA CR-165836, 1982,

39. Nagel, P. M., Scholz, F. W & Skrivan. J. A., Soft'.vare reliability: additional
investigations into modeling with replicated experiments. NASA CR-172378,
1984.

40. Adams. E. N., Optimizing preventive service of software products. IBM Journal
ot" Research aml Det'elopment, 28 (t 984) 2-14.

41. Hamlet. R. G.. Probable correctness theory, bt_r, raticm Processing Letters, 25
(1987) 17-25.

42. Hamlet. D. & Taylor, R., Partition testing does not inspire confidence.
Proceedings _f Second IVorkshop on Software Testing, l'erification, and Analysis.
IEEE Computer Society Press, Washington, DC, 1988, pp. 206-15.

Appendix 3

M. Lyu, H. Hecht, H. Kopetz, D. Miller, J. Musa, M. Ohba, and D.
Siefert, "Research and Development Issues in Software Reliability

Engineering," Proceedings of the IEEE International Symposium on
Software Reliability Engineering (1991); 80-89.

(Reprinted in Software Engineering Notes 16,2 (1991): 23-30.)

PANEL: RESEARCH AND DEVELOPMENT ISSUES

IN SOFTWARE RELIABILITY ENGINEERING

Panel Chair: Michael Lyu (University of Iowa)

Panelists: Herbert Hecht

Hermann Kopetz

Douglas Miller

John Musa

Mits Ohba

David Siefert

(SoHaR Inc.)

(Technical University of Vienna)

(George Mason University)

(AT&T Bell Labs.)

(IBM Corporation)

(NCR)

Introduction

Michael R. Lyu, University of lowa

Computers are bringing revolutionary changes to our
life with their involvement in most human-made sys-
tems for sensing, communication, control, guidance and

decision-making. As the functionality of computer
operations becomes more essential and complicated in
the modern society, the reliability of computer software

becomes more important and critical.

Research activities in software reliability engineering
have been vigorous in the past 20 years. Numerous
statistical models have been proposed in the literature
for the prediction and estimation of software reliabil-
ity, and many research efforts and paradigms have been

conducted for the design and engineering of reliable
software. However, there seems to be a gap in between
the achievements of software reliability research and

the results from software reliability practice. We keep
on hearing troublesome software projects, horrible
software failures, and misconceptions in software reli-
ability applications.

It is the purpose of this panel to bring together

researchers and practitioners of this field to discuss
the software reliability problems which will have
tremendous impact to our daily life. The panel is

expected to raise research and development issues
under this concern, to address existing and potential
problems, to resolve some misunderstandings and
conflicts, and to reach a fundamental basis for the

TH0336-5/91/0000/0080501.00 © 1991 IEEE 8o

advancement of this field.

The panelists are invited to discuss those topics inclutl-

ing, but not limited to, the following:

(1) What are thc most urgent needs for software rcliJ-
bility practitioners?

(2) What kind of issues practitioners would like
researchers to pursue?

(3) Did practitioners get _tisfactory results from
software rcliability researchers?

(4) What are the most challenging software reliability
issues researchers are facing today?

(5) Did researchers gain enough support to perform
software reliability research?

(6) What kind of inputs or feedbacks researchers are

seeking from practitioners?

(7) What practices should be developed and con-
ducted based on the current research results?

(8) What is the gap in between software reliability
modelers and measurers? How to abbreviate it?

(9) What kind of multi-institutional efforts have
been, or should be conducted for acquiring

software reliability standards, handbooks, bench-
marks, database, tools, etc.?

The following sections consist the position statements

written by each panelist under the panel title and the
suggested topics.

OR|C.-._N_L rAGt- IS

OF POOR QUALITY

PRE(_EDING PAGE BLANK NOl FIL_;iJ

Quantitative and Qualitative Concepts

Herbert Hecht, SoHaR

For Project Managers the reliability of the com_ting
function as a whole is of primary concern, and for that

purpose a combined quantitative hardware/softwarcreli-
ability expression is required. The responsibilitl, for

hardware and software functions is frequently separated
immediately below the project management level, and

therefore the project manager also needs seemate
models for allocating and controlling the achieverm_t of
adequate reliability. For these purposes broad stati_u'eal

reliability metrics are suitable, particularly failures per
unit time of computer usage or time unit loss of com-
puter availability due to failures. Examples: failur_ per
CPU-hr or outage-hrs per month.

The software manager is responsible for achievir_ the
statistical reliability goals but in order to know where

and how to improve the reliability more specific me.as-
urements are required. Quantitative approaches ha_ so
far been only of limited use in this domain. Audits,
employment of software development and test tool.%and

lest planning are largely guided by purely qualmtive
considerations. Therefore there exists at present nocon-
sistent methodology that permits the software manager

to meet the quantitative requirements imposed b), sys-
tems considerations with the tools at their disposal.

Two activities can bring about a connection betwee_ the
quantitative and qualitative approaches, and can provide
sorely needed advances toward achieving more reliable

software. The first activity is the quantitative analyis of
failures in terms of software development and test It_ch-

niques that could have prevented them. The resdling
data, particularly if they are weighted by severity d the
failure, can provide the software manager with coa_rete
information on the means of improving the reliabtT)/of
his/her product.

The second step deals with the use of quantitativedata
as a test termination criterion. The present practkc of

ending test on the basis of schedule, budget, or ('==the
very best eases) attainment of a period of failure free
operation, provides little useful feedback to the Itam

that developed the software or for the test planni_ in
other projects. Reliability growth measurement d_ing
formal test will permit termination on demonstratiat of

a defined reliability level and will also provide in_ghts

into the effectiveness of different development andltest
methodologies.

I will present examples of these integrated practice_

Reliability of Real Time Systems

Hermann Kopetz, Technical University of Vienna

Since my background is in the area of fault-tolerant dis-
tributed real-time systems, my view is determined from
this position.

In hard real-time systems, i.e., systems where a failure
can have catastrophic consequences, a result must be
correct, both in the domains of value and time. Since the

behavior in the domain of time depends on the proper-

ties of the underlying hardware, an integrated
software/hardware view has to be taken. The functional

correcmess of the software per se (i.e., correctness in the
value domain) is not sufficient.

Many failures of real-time systems are related :o syn-
chronization and performance errors which rr,anifest

themselves as 'transient' system failures. In a failure
statistics of a complex real-time system [Gebman 19881,
it is recorded that less than 10% of the failures obse_'ed

in the operation of the system can be reproduced _.ithin
the sophisticated test envu-onment. Similar results have

been reported by other manufacturers of real-time sys-
tems. This implies that we do not fully understand the

character and the interactions of the execution seqt,ences
which unfold over time in complex real-time systems
and do not know how to build effective test procedures.

This problem has to be attacked from the perspective of
design. We have to build real-time architectures that are

easier to reason about. Most of the prescnt day real-time
systems are event triggered, i.e., as soon as an event
occurs, the computer system takes a decision whether to

process the task associated with this event immediately
or the delay processing until sometimes later. These

dynamic scheduling decisions can take a significant
amount of processing time, which is then not available
for the application software. Every different order of

the events can give rise to a different scheduling deci-
sion and thus to a different execution sequence. The
potential input space of event-triggered systems is enor-
mous. It is difficult to reproduce an input scenario
because the exact timing of input cases cannot be con-
trolled easily'. There are no methods known which can

be applied to reason forrl_ally about the timing behavior
(i.e. the performance) of complex real-time systems.

If we introduce a time-granularity in the system opera-

tion by looking at the events only at predefincd points in
the time domain (i.e., a time triggered architecture), the
plurality of input cases can be substantially reduced.
Furthermore, static scheduling strategies become fcasi-

81
OF POOR QUALITY

Ne. The system structure will be more regular, i.e.,
more predictable and easier to understand and list. The
price paid for this reduction in complexity is a reduced
flexibility.

We feel that in the field of real-time systems every effort
must be made to make the system clear and understand-
able. In our research on distributed real-time systems

[Kopetz 1989] this has always been out primary goal.
We have found that time-triggered real-time software is
inherently easier to understand and test than event-
triggered software. Further research efforts in this area

seem to be well justified.

Statistical Issues in Software Reliability

Engineering Research and Development

Douglas R. Miller, George Mason University

There ate two major issues concerning software reliabil-
ity: achievement and assurance. They are both very
important. Obviously, software in critical applications
must achieve high reliability in order for the system to
function safely. But it is also necessao' to have strong

"a priori" assurance that the software is highly reliable
before it can be put into use. For example, without rea-
sonable assurance that high rcliability has been

achieved, flight critical avionics software in commercial
aircraft should not be certified for public use.

So, the central focus of Software Reliability Engineering
R&D is methodologies for achieving and assuring

requ_ed levels of software reliability. The goal is reli-
able software. How do you do it? How do you "know
when you've done it? Furthermore, what are the most

efficient ways to achieve and assure the reliability?

A central idea concerning reliability is "uncertainty." A

given piece of software may or may not contain design
flaws which will manifest themselves as system failures
when the software is used at some time in the future.

The point is that uncertainty is inherent to this

phenomenon: we do not know if failures will happen
and, if they do, when they will happen. To deal with
this uncertainty, a scientific approach should be taken.
The scientific approach involves experimentation, data
collection, statistical modelling and analysis, and draw-
ing inferences and conclusions which will support deci-

sions about developing, testing and using software. The
existence of probability seems inevitable here. It is
necessary to quantify the uncertainty in terms of proba-
bilities of various events occurring.

Based on information or data concerning software
development, testing, previous failures, the usage
environment, and any other observables, we _tould like
to estimate (with confidence) the probability that a par-

Ocular piece of software fails during a given time inter.
vat.

Reliability growth models attempt to estimate current
reliability and predict future reliability growth for a

given piece of software. These models base their esti-
mates and predictions only on past failure times of the

given piece of software. IBM's Clean Room used relia-
bility growth models successfully. At the May 1990

Meeting of the IEEE Subcommittee on Software Relia-
bility Engineering, successes were also reported by
AT&T, HP and Cray Research. Unfortunatc'ly, the relia-
bility growth modelling approach is limited in many

ways: The models treat the software as a black box and
are only valid for random batch (memor)'less} testing or
usage. The distribution of usage must be well know.
The models do not make use of additional data or infor-

mation which comes out during testing or usage. The

approach does not give useful estimates for extremely
high levels of reliability (e.g., avionics software and
other safety-related systems).

There are many factors which contribute to tile reli:tl)il-

it)' of a piece of software. Case studies such as those
sponsored by NASA Goddard's Software Engineering
Laboratory explore the effect of various factors on
software quality. Factors of interest include different

development scenarios, different testing strategies,
characteristics of programmers, and others. It can be
shown that software quality correlates with various

known factors, but calculating rcliabilitics from these
factors seems difficult if not impossible. One very
important category of information which should have
significant value in predicting reliability of a piece of
software is the programmer's personal subjective esti-
mate of its reliability, especially after he has seen and

done a post mortem on the first few bugs discovered.

Current practice is often based on engineering judge-
ment. For example, commercial avionics software must
be produced following guidelines presented in 130-
178A, "Software Considerations in Airborne Systems

and Equipment Certification," prepared by Special Com-
mittee 152 of the RTCA and currently under revision by

Special Committee 167. If appropriate documentation
supports compliance, the FAA certifies the software.
The actual software is never examined as part of the
certification. A major challenge facing the discipline of

Software Reliability Engineering involves justifying this

S:l OR!_._No_L FACE IS

oe. i_C_ORQUALITY

type of approach (also contained in various Military
Standards) in some objective, scientific sense.

To summarize: i)For certain classes of software pro-
jects, quantitative reliability estimation and prediction is

possible (and is done) for individual programs.
ii)Through general case studies it is possible to identify
factors effecting reliability and thus a get qualitative

sense of what constitutes good software development
practice, iii)For many critical software systems requir-
ing high reliability, the approach to reliability is very
subjective.

It is clear that a quantitative, objective approach to
software reliability should be applied to more software

projects. This means going beyond the current practice
of software reliability growth modelling. The key seems
to be: It is necessary to use available data much more

efficiently (and imaginatively). There are two
categories of data sources: Additional data can be col-

lected (and Used) specific to any particular piece of
software whose reliability is being assessed. More

importantly, there is data from similar and related pieces
of existing software; I don't think we know how to make
effcctive use of this data.

The goal is better quantitative understanding (and
exploitation of that knowledge) of many software

phcnomena: behavior of real-time control systems, intri.
cacies of fault-tolerant systems, efficacy of testing,
identification of usage distributions, etc. All this
knowledge is related to classes of software. (It is neces-

sary to understand more than single software systems
individually, one at a time.) Software metrics must be a

key feature in this general quantitative undcrstanding,
because the similarity between pieces of software must
be measured in order to define classes of software.

To progress it is necessary to acquire data. An ideal (but
expensive) source is controlled experimentation. For

example, NASA Langley continues to sponsor experi-
ments where replicated software is written. A better

understanding of replicated batch-processing software
has emerged from such experiments. Current experi-
ments should improve understanding of replicated real-
time control software. A second general source of data
are real software projects. A prime example is the data
collected and published by Musa; his data stimulated a

flurry of activity in reliability growth modelling. Such

experimentation and data collection is crucial. Experi-
menting and collecting useful data across general classes

of software projects is a tremendous challenge.

The Software Reliability Gap: An Opportunity

John D. Musa, A T& T Bell Labs.

We are in the middle of both a problem and an oppor-

tunity. I like to call it the "software reliability gap"
because the needs of software customers have outrun the

current practice of software engineering. You can't tell

whether they have outrun the technology, because there
is much technology that hasn't been refined and applied.

The core of the problem is that intense international
competition has made unidimensional needs obsolete. If

we only needed to add reliability to software products,

we would have many tools and methodologies to help
us. The problem is that other customer req,cirements,
such as level of cost and delivery date, wouTd not be
met. Customers have multidimensional need_ that ate

interdependent and hence must be set and met _-_orepre-
cisely than ever before. The precision required can only
increase in the future.

Thus measurement is inevitable. Models are also inevit-

able; we need to know the factors that influence product
attributes and how much each of them does, so that the

software development process can be controlled to yield
the desired objectivcs for the attributes. In short, com-

petition is creating a technological vacuum orgap.

The principal quality attributes that customers cite as

being significant are reliability, cost, and delivery date.

Software reliability cngineering is the last to develop of
the three technologies supporting the measurement and
modeling of these attributes. It is the keystone that
makes quanti_tive software quality engineering possi-

ble. Since quantitative hardware quality engineering
already exists, the devclopmcnt of software reliability
engineering also makes quantitative system quality
engineering possible.

Thus there is an enormous and rare opportunity to fill a

widening gap, which makes this an exciting and chal-
lenging time.

What must software reliability engineering do to meet

the challenge? In my opinion, several general things:

(1) We need to induce a variety of projects to try it.
This is already happening, but greater variety
would be useful. Care must be taken that it be

applied correctly.

(2) The experience on these projects must be
recorded, critiqued by others knowledgeable in

Oi_" I_.OP, QU._.L]T'Y
83

(3)

(4)

the ficld (to guard against misinformed applica-

tions), and published.

Published experience should be organized and
digested, so it can be more easily taught to practi-

tioners and future practitioners.

Problems that are blocking further progress and
opportunities for new areas of application need to

be identified, and they should be addressed by
researchers.

These activities clearly offer major possibilities for prac-
titioners, researchers, and educators. People who

acquire and use software play an important role in clari-
fying the needs of the customer that are at the core of

the driving forces acting on software reliability
engineering.

Can I say anything more specific? I would like to close
by entering brainstorming mode and throwing out some
thoughts for you to discuss:

(1) We need research to tie software reliability more
strongly to the earlier part of the development pro-

cess. Part of this effort involves determining how
fault dcnsity is affected by product and process
variables.

(2) Little has been done to fulfill the promise of
software reliability engineering for evaluating

software engineering methodologies and tools.
We need to help people do this.

(3) We need data on human and computer resource

usage in test, so that resource usage parameters
can be determined.

(4) The AIAA software reliability engineering guide-
lines effort, which includes development of a
handbook, looks promising. Because of the diver-

sity of contributors involved, it will be important
to devote much effort to interaction between and

integration of their views. We don't want a cata-
log.

(5) We need to strongly support our newsletter and

our conference through personal participation in
exchanging practical experience and research
results. We need to keep the exchange flowing all
year through our working committees.

(6) We need software tools (with as many generic

elements as possible) to record as large a propor-
tion of failures as possible automatically, particu-
larly in the field but also in test. We need to

integrate this system with manually-reported
failure systems, but consider implementing the

(7)

manual reporting online rather than on papcr.

The Software Engineering Institute has a metho-
dology for assessing the quality level of software
development processes. It does not currcndy
directly include a software reliability engineering

program among its assessment criteria. It should,
and we should discuss with them how to add it.

I hope you will not only discuss these ideas here, but
chew on them later as well. I hope you will add to this
necessarily partial list of opportunities for action, I hope

you will then seize some of them that appeal to you, an¢
return as significant contributors next year or the yea.-
after.

Soflwzre Reliability Engineering

from Japanese Perspective

Mits Ohba, IBM Corporation

"The wave comes from the East."

Both the computer technology and the quality control
method were invented and matured in the US, :and they
were brought into J:apan later. Japan has so far caught

up quickly and become competitive in both are:as. Espe-
cially, Japan is viewed as the leader in the area of qual-
ity control and quality management.

"Technology transfer begins when it is imported."

If we carefully review the processes by which Japan has

caught up and gone further, we can find some similar
patterns of technology development. The processes gen-
erally begin at the importing phase where technology is
investigated and evaluated. Then there is the deploy-

ment phase, the migration phase, and finally, the .rapani-
zation phase.

"How does it go through?"

The deployment phase is the phase where the imported
technology is widely used and the know-haws associate
with it are accumulated. The migration phase is the

phase where components of the technology are adjusted
for the target envuonment(s). The Japani_tion phase is
the phase where something additional and unique to
Japan is added to the technology.

"How has Japanese software engineering evolved?"

Software engineering is a case in point. It was intro-
duced into Japan in 1977, which was two years later

$4

"It,

P

v

than the first IEEE Transaction on Software Engineering

issued. Two years were spent on the importing phase
followed by two years of deployment. The migration
phase began in 1982 and lasted six years. The Japaniza-

tion phase began in 1988. An example of the Japaniza-
tion phase is what has become known as the "Software

Factory" concept

"Software reliability research is not an exception."

As a domain of research, software reliability engineer-

ing is not an exception to the Japanese process. The ear-
lier work done in the US by Musa, Goel and Okumoto
drew the attention of Japanese reliability researchers as
their new field of study.

"What have Japanese researchers done in this field?"

To date they have: 1) evaluated the basic models pro-
posed by the American researchers by applying them to

real project data, 2) modified the models in order to fit
the data, 3) developed new models by examining the
implication'of data and the assumptions of the basic
models, and 4) addressed the new research issues of
models to be resolved.

"Software factory did not need theories."

On the other hand, software reliability engineering as a
practice has evolved differently. It was begun as a
branch of software quality control practices in order to
determine whether a product developed by a vendor was
acceptable. The logistic curve model and the Gompertz
curve model were widely used in the industry and
became de facto standard models for software factories.

"Technology transfer is really the problem."

The implementation 6: the theory which has been
developed by Japanese researchers is very slow. This is

because the old models, with which the practitioners are
familiar, are still sufficient for their needs. They will not
change as long as the old practices work or until they
recognize the advantages of the new theory. This is
similar to the fact that people had believed the stars were

rotating.

"How can we convince the people that the earth
rotates?"

The most serious issue of software reliability engineer-

ing as a practice in Japan is the education of the people.
It is similar to teach them that the earth rotates, not the

stars. The modcls are not crystal balls. Prediction is
made based on a set of assumptions. If the assumptions

are not valid, a model b_d on them becomes a great

nonsense. The Gompcrtz curve fits most of practical
project data because of its flexibility. But, no one can

explain what the model really means.

"Why do we believe that the earth is rotating?"

The most serious issue as a domain of research is to

explain the relationship between test cases and reliabil-
ity growth using reasonable models, which is also simi-

lar to explain the reason why the earth seems to be rotat-
ing. What software reliability growth tells is characteri-
zation of the state of software under evaluation. It does

not tell how we can improve testing. Obviously, time is

not the real factor for improving software reliability dur-
ing the test phase.

"Can measurements and data be standardized?"

A serious issue for both practitioners and researchers is

to establish standard ways of measuring software relia-
bility in practice. The models are based on a set of

assumptions. The models should be categorized based
on !) what they can predict (e.g., MTTF, number of
errors), 2) what type of data they need (eg., time
between failures, numbcr of failures bctwccn observa-

tions), 3) what assumptions they are based on, and 4)
v,hat type of software they can analyze.

Back To The Future

David Siefert, NCR

For the past 20 years, Software Engineering has pro-
vided us with the capability for producing highly reli-

able software. Software reliability is achieved, in part,
through the applied discipline of standardizcd practices,
methodologies, tools, and processes comprising the "sci-
ence" of Software Engineering. Today, dependence on

automation is greater than at any point in time in the
world's history. Highly reliable products are expected
and assumed! The very nature of the level of sophistica-
tion and complexity of modem systems are intended to

be wansparent to the end-user.

Applying Software Reliability Engineering Discip-
lines

Interestingly, the same practices, methodologies, etc.
that lead to the development of reliable software are also

the downfall! Why after all these years of "lcarning" is
the world still not applying and improving Software

Engineering disciplines etc.? Why do practitioners still
develop and maintain software based upon the

$5

approachesused20ycarsago(lackof applieddiscip-
linc)? Why is it that rese.archcrsdo not yet know
exactly what is the minimum that should be done to
develop reliable software? In supl_n of consistently
producing reliable software, why after 20 years is there
still not a national database leading to the consistent pro-
ject data collection, analysis, and ultimate determination
of practices, tools, and therefore required disciplines?

Shouldn't a Software Engineering "Bluebook" exist?

Software Reliability Engineering is addressed in the fol-

lowing two ways:

(1) Technical Aspects of Software Reliability

Technical software reliability consists of many

items. Determining reliability goals is one
activity. Reliability goals are typically referred to
in "technical" terms. These technical terms are

placed in product specifications. As it pertains to
-Software Reliability Engineering, these terms or

goals are then tracked through product production
to the achievement of the goals. The environment
that the software was produced in, plays a
significant impact on the results. These specified
rcliability goals often are determined through the
application of software reliability models. An

AIAA effort addressing Software Reliability is in
the process of providing guidance to industry on
which models to use and when. The computing

industry has yet to standardize these specific
modcls.

(2) End-User Software Reliability

"i'he second form of Software Reliability

Engineering is that of the end-user. The technical
specifications which include the software reliabil-
ity goals are expected to be mapped direcdy to the
end-user's needs and expectations. Too often
there is no known methodology to take qualitative

and rather subjective unstructured feedback from
the end-user and transform them into quantifiable

and technically oriented input for use in determin-
ing software reliability. Without this methodol-
ogy, there will remain to be software reliability
difficulties. Meeting "specification" infers meet-
ing the end-user's expectations. Meeting

specification is certainly one essential form of
measurement. Technical specifications are the
result of analysis of the end-user's expectation -
not the other way around. Too often the technical

specification and the end-user's expectations are

distinctly separate with no relationship between
each other. This results in minimal confidence

that the product v.ill achieve it's expectations.

Environmental issues are also important. To understand

software reliability, one must understand the environ-
ment software resides. The environment for software is

systems! System components include other software
and hardware. Reliability should be computed or budg-
eted in such a manner that reliability for each of the

components of the computer environment can bc deter-

mined, evaluated, measured, and tracked separalcly

Reliability should also address a "total" system or
enterprise-wide solution. Typically, the end-user i-

affected by using or experiencing the "'total" syster_
They typically have no ability to dccipt, er the t)pc c
defect or anomaly that has occurred. It is not clear tha
they should. At any rate, Software Reliab:lity Engineer-

ing needs to address the "total" system as well as the
individual system components.

The Software Engineering community has rcli:lbility
models that lead to establishing reliability goals. "High
Confidence" goals (outpuLs) produced through the use of

the_ mcx:lels arc dependent upon past history. This hi.i-
tory should be retained in the form of a database.
Intcrcstingly, no new significant software estimation
modcls have been revealed in the past 5 years. Widaout

the use of such databases n_ input to and the "tt,ning" of
such models, the community is no closer _o estimating

with high confidence levels the goals produced from the
models as was able to be attained 5 years ago. The
goals produced through the use of these models may not
be any better than the "guess" of you or I.

Besides past history, the technically specified software
reliability goals are established and dependent on some
basic items of information:

How is end-user's "needs" quantified?

What is a software error, fault, and failure?

What are the categories of software?

How is Defect and Fault Density computed?

What and how is line-of-code or Function Point,

by language, determined?

How is line-of-code or Function Point translated

between languages?

How is Defect Density affected by software pro-
duction environmental issues?

How is software to be tracked?

86
OF POOR QIJ_LtT'_

Recommendations in Improving Software Reliability

• For Practitioners:

(0 Practitioners must apply the disciplines considered
to Software Engineering. Techniques, methods,

tools, etc. as associated with planning, design,
development, testing (including verification and
validation), should be learned and rigidly applied.

(2) Each software production (or maintenance) organ-
ization should develop and maintain a Software
Engineering Environment Process (SEEP). This
process should consist of all disciplines, tools, etc.

actually used in the production of the software -
including the measurement systems, of which
software reliability is a part.

(3) Practitioners should develop a database of past
projects. The database should consist of such
informa'tion as: the environment that produced the
software, skill and types of personnel producing
the software, Defect Densities, etc. This database

is to be used as a basis for a Software Reliability
Measurement Program (SRMP) and positioning

for continuous improvement in Software
Enginccring.

(4) A software reliability measurement program
(SRMP) should be put into place that consists of
measures that address both the .scope of the
Software Enginccring Environment Process and

specific product related results. Mcasures should

consist of indicator measures, e.g., Test Coverage
and estimator measures - models to estimate relia-

bility. The measurement program should consist
of a methodology that addresses the use of the

models beginning with the "how to" develop relia-
bility goals and ending with an approach of a pro-
ject post mortem. The previously mentioned data-
base would maintain all data. The database would

provide for causal root cause analysis and process
improvement of the Software Engineering
Environmental Process.

• For Computer Scientist Researchers:

(0 Researchers are to develop and maintain a

national database (see above). The information

contained in the database as previously noted
should contain both product and environmental
information. Researchers should evaluate the
information in such a manner as to determine the

best practices, methods, required skills etc. to con-
tinuously improve software reliability.

(2) Researchers should provide standards on such
subjects as: language constructs, line-of-code
definitions, Function Point, etc.

(3) Researchers should determine minimum impacts
as to how to conclude with deriving "high
confidence" software reliability goals, etc.
Models are to be evaluated and maintained.

(4) Researchers should also determine education cur-

ricula for software engineering enabling the con-
tinuous achievement of high confidence reliable
software.

O3 Researchers should determine how to quantify
results from evaluating user's needs. These
results are used as input into various different reli-

ability tools, models, etc. as discussed earlier.

(6) Researchers should establish and maintain a "Blue

Book for Software Engineering."

Concluding Comments

The world continues to cmbrace higher and higher levels
of technology. Software is at the heart of the demand
for complex features and functions which are packaged
to make the complexity transparent to the end-user.
High confidence software reliability is in jeopardy.

Software Engineering processes that consist of discip-
lines, tools, methods, etc. are not being utilized con-

sistently. The science of Software Engineering is not
being practiced.

A need exists to focus on the basics; in the simplest form

of understanding software and Software Engineering.
Data needs to drive decisions. Attaining highly reliable

software - consistently - positioned through processes
for the purpose of improvement is essential. Research-

ers need to provide the "data driven" credibility in the
baseline evaluations of software and software environ-

ments (and processes). Researchers need to see that the

appropriate Software Engineering disciplines are applied
- consistently and appropriately, evaluating the results,
and improving the disciplines and processes.

The disciplines exist in the form of Software Engineer-
ing to produce reliability software? The discipline and
formality required to achieve the results remain to be the

challenge? The solution is: "go BACK and apply the dis-
cipline TO get to TIIE FUTURE..."

87

